Department of Natural Resources MARYLAND GEOLOGICAL SURVEY Kenneth N. Weaver, Director

REPORT OF INVESTIGATIONS NO. 41

FIRST REPORT ON THE HYDROLOGIC EFFECTS OF UNDERGROUND COAL MINING IN SOUTHERN GARRETT COUNTY, MARYLAND

by

Mark T. Duigon and Michael J. Smigaj

Prepared in cooperation with the United States Department of the Interior Geological Survey and the Maryland Bureau of Mines

CONVERSION FACTORS

For use of readers who prefer to use metric units, conversion factors for terms used in this report are listed below:

Multiply	<u>Ву</u>	<u>To obtain</u>
inch (in.)	25.40	millimeter (mm)
foot (ft)	0.3048	meter (m)
mile (mi)	1.609	kilometer (km)
gallon (gal)	0.003785	cubic meter (m ³)
gallon per minute (gal/min)	0.0631	liter per second (L/s)
gallon per day (gal/d)	0.003785	cubic meter per day (m ³ /d)
million gallons per day (Mgal/d)	0.04381	cubic meter per second (m ³ /s)
gallon per minute per foot [(gal/min)/ft]	0.2070	liter per second per meter [(L/s)/m]
cubic foot per second (ft ³ /s)	0.02832	cubic meter per second (m ³ /s)
micromho per centimeter at 25° Celsius (µmho/cm at 25°C)	1.000	microsiemens per centimeter at 25° Celsius (μ S/cm at 25°C)

National Geodetic Vertical Datum of 1929 (NGVD of 1929): A geodetic datum derived from a general adjustment of the first-order level nets of both the United States and Canada, formerly called mean sea level. NGVD of 1929 is referred to as sea level in this report. Department of Natural Resources MARYLAND GEOLOGICAL SURVEY Kenneth N. Weaver, Director

REPORT OF INVESTIGATIONS NO. 41

FIRST REPORT ON THE HYDROLOGIC EFFECTS OF UNDERGROUND COAL MINING IN SOUTHERN GARRETT COUNTY, MARYLAND

by

Mark T. Duigon Maryland Geological Survey

and

Michael J. Smigaj U.S. Geological Survey

Prepared in cooperation with the United States Department of the Interior Geological Survey and the Maryland Bureau of Mines

COMMISSION OF THE MARYLAND GEOLOGICAL SURVEY

M. Gordon Wolman, ChairmanBaltimore
S. James Campbell
James M. CoffrothFrostburg
Richard W. CooperSalisbury
John C. Geyer

CONTENTS

	Page
Abstract	1
Introduction	3
Purpose and scope	3
Location	3
Methods of study	3
Previous investigations	3
Acknowledgments	6
Geography	6
Physiographic setting	6
Basin geomorphology	6
Climate	10
Soils and vegetation	10
Geology	11
Stratigraphy	11
Geologic structure	13
Coal mining	16
Previous mining activity	16
Current mining activity	16
Stream characteristics	20
Components of streamflow	20
Flow characteristics	20
Stream-seepage investigation	22
Surface-water quality	23
Ground water	35
Observation-well network	35
Water levels	35
Aquifer properties	41
Ground-water flow system	46
Ground-water quality	47
Hydrologic budget	55
Components of the budget	55
Evaluation of the budget	55
Future work	55
Summary	57
References	60
Appendixes	63
A. Surface-water-guality records	64
B. Lithologic and geophysical well logs	83

ILLUSTRATIONS

			Page
Figure	1.	Map showing location of the study area	4
	2.	Map showing data-collection network	5
	3.	Channel profiles of North Fork, South Fork, and Laurel	
		Run	7
	4.	Map showing drainage basin boundaries for North Fork,	
		South Fork, and Laurel Run	8
	5.	Map showing stream-channel traces derived from topographic	
		map	9

ILLUSTRATIONS (Continued)

Page

Figure	6. 7.	Generalized geologic column for study area Map series showing environmental transitions from late Mauch	11
	8. 9.	Map showing the geologic structure of Garrett County, Md Map showing the altitude of the base of the Upper Freeport	12
	10.	coal of the Allegheny Group Map showing linear features (fracture traces), and fracture orientation fraquency rosette	14
	11.	Map showing abandoned surface and underground coal mines	13
	12.	Map showing boundaries of the Mettiki Mine (Upper Freeport coal of the Allegheny Group) and approximate extent of mineable Lower Bakerstown coal of the Conemaugh Group	18
	13.	Maps showing extent of Mettiki mines at the beginning and end of the study period	19
	14.	Graphs showing mine pumpage, stream discharge, and precipi- tation for the period May 1, 1980, to September 30, 1981	21
	15.	Graph of flow frequencies of North Fork, South Fork, and Laurel Run for the period May 1, 1980, to September 30, 1981	22
	16.	Graphs showing relation of streamflows at upstream and tributary sites to streamflows at the gaging stations	24
	17.	Maps showing pH, specific conductance, and discharge at the seepage-investigation sites	27
	18.	Graphs of temperature and specific conductance of North Fork, South Fork, and Laurel Run	32
	19.	Graphs showing the relationships of specific conductance and discharge in North Fork, South Fork, and Laurel Run	33
	20.	Graph showing the relationship of pH and discharge in North Fork, South Fork, and Laurel Run	33
	21.	Graph showing the relationship of dissolved sulfate and dis- charge in North Fork, South Fork, and Laurel Run	34
	22.	Geologic section showing open-hole zones of wells and iden- tification of coals	36
	23.	Diagram of typical observation-well construction	35
	24.	Hydrographs of observation wells at sites 1, 2, and 3	39
	25. 26.	Map showing mining progress in the vicinity of site 1 Graph showing the relationship of the amount of water-level decline since March 1981 to the difference in altitude between the well bottom and the Upper Freeport coal of the Allegheny	40
	27.	Group	41
	28.	Graph showing variation of hydraulic conductivity with depth.	43
	29.	Map and cross-section showing regional flow directions	48
	30.	Cross-section showing possible ground-water flow paths prior to April 1981	49
	31.	Section from Backbone Mountain through site 1 to the North Branch Potomac River showing generalized ground-water	
	32.	flow Trilinear diagram showing chemistry of ground and surface	52
		water in the study area	54

ILLUSTRATIONS (Continued)

Page

Figure	33.	Diagram showing the approximate hydrologic budget for water	
		year 1981	56
	34.	Block diagrams showing some possible consequences of under-	
		ground coal mining on the hydrologic system	59

TABLES

]	Page
Table	1.	Geomorphic characteristics of the North Fork, South Fork, and	
		Laurel Run basins	10
	2.	Mean temperatures and precipitation at Oakland, Md., for the	
		period 1941-70	10
	3.	Summary of streamflow in North Fork, South Fork, and Laurel	
		Run, for water year 1981	20
	4.	Monthly mean discharge at North Fork, South Fork, and	
		Laurel Run	22
	5.	Lowest 7-day flows at North Fork, South Fork, and Laurel	
		Run, May 1, 1980, to September 30, 1981	23
	6.	Results of stream-seepage investigations	25
	7.	Summary of surface-water quality at gaged and ungaged sites in	
		the study area	28
	8.	Records of wells, underground mine discharge sites, and springs	
		in the study area, southwest Garrett County, Md	37
	9.	Geophysical logs of selected wells in the study area	38
	10.	Characteristics of the hydrologic units tested	44
	11.	Aquifer diffusivity and estimated transmissivity and storage of	
		the North Fork, South Fork, and Laurel Run basins	46
	12.	Chemical analyses of ground water	50
	13.	Chemical analyses of water from Mettiki Coal Corporation	
		observation wells, Garrett County, Md.	53

FIRST REPORT ON THE HYDROLOGIC EFFECTS OF UNDERGROUND COAL MINING IN SOUTHERN GARRETT COUNTY, MARYLAND

by Mark T. Duigon and Michael J. Smigaj

ABSTRACT

Recent increased demand for coal is expected to increase surface and underground mining activities in the coal basins of western Maryland. This report describes preliminary findings on the hydrogeologic system in southwestern Garrett County, Maryland, where a large underground coal-mining operation had recently begun. A network was established to gather streamflow, water-level, and water-quality data. It is presently planned to continue data collection throughout the period of mining and reclamation.

Shallow (less than about 100 feet deep), intermediate (about 100 to 400 feet deep), and deep (greater than about 400 feet deep) ground-water flow systems are present in the study area, and all are characterized by low, secondary permeability. Hydraulic conductivity (less than 2 feet per day) of the shallow system is about two orders of magnitude greater than the deeper systems. Deep ground-water flow is part of a regional system whose boundaries are miles beyond the study area. The base of the fresh ground-water system was found at one site in the study area at a depth of 940 feet below land surface.

Drainage from earlier mining activities was found to contribute substantially to surface-water quality. Measurements of pH in Laurel Run ranged from 2.4 to 3.8, dissolved aluminum ranged from 1.7 to 6.9 milligrams per liter, and dissolved sulfate ranged from 42 to 250 milligrams per liter. The North Fork and the South Fork of Sand Run were less severely affected by earlier mining; however, the South Fork was receiving about 1 million gallons per day of treated acid mine drainage from the current mining operation.

Well-water samples and a sample collected inside the mine had pH values above 6 and generally low levels of dissolved solids. Samples collected from underground-mine discharge points had low (2.6 to 4.0) pH and high (1,000 to 3,430 milligrams per liter residue) dissolved-solids content.

Dewatering of the underground mines has affected ground water and surface water in the study area. Water levels at one cluster of observation wells dropped from 77 to 350 feet as mining approached to within several hundred feet of the cluster. Total runoff in the Laurel Run basin decreased as mine dewatering occurred in the basin. Discharge of water pumped from the mines into South Fork increased total runoff in that basin.

.

Purpose and Scope

The Mettiki Coal Corporation has begun a large operation in the Upper Potomac coal basin in southwestern Garrett County, Md. (fig. 1; see fig. 5 for location of coal basin). The impact that this operation will have on the hydrologic system of the area is not fully known. The purpose of this study is to describe the effect of a large underground coal mine on the present hydrologic system. A data-collection network was set up to measure ground-water levels, stream discharges, water chemistry, and stream-aquifer relationships. Three drainage basins were intensively studied from May through September 1981 to determine discharge and water quality of principal streams draining the study area. Ground-water/surface-water relationships were evaluated by measuring stream discharge, stream seepage, ground-water levels, and quality of ground and surface water. Measurements of ground-water levels, pumping rates and (or) discharges, water quality, geophysical properties, and other pertinent characteristics were made at 24 wells, 3 underground-mine discharge sites, and 4 springs in the study area. Measurements of precipitation also were made for use in a water-budget analysis of the study area. Data were collected during early phases of mining and will continue to be collected in order to document changes that may occur with continued mining.

Location

The study area is located in southwestern Garrett County, Md. (fig. 1). It is bounded on the northwest by Backbone Mountain and on the southeast by the North Branch of the Potomac River. The area includes the drainage basins of Sand Run (North and South Forks), Laurel Run, and minor streams to the southwest.

Methods of Study

Various kinds of data were collected at the sites shown in figure 2. Three clusters of wells were drilled across the geologic structure of the study area (four wells at sites 1 and 2, and five wells at site 3). Waterlevel recorders were installed on each well and additional water-level measurements were made periodically in the coal company's observation wells. Three stream gages were constructed and instrumented to monitor stage, temperature, and specific conductance. Additional stream sites were selected for miscellaneous measurements. The data describe existing hydrologic conditions (in an area that is already affected by abandoned coal mines), comprising a baseline with which later measurements can be compared to determine the magnitude of impacts due to mining recently begun by Mettiki Coal Corporation. Seepage runs were performed to increase understanding of ground- and surface-water interactions and to supplement other streamflow data. Geologic sections, water-level data, and aquifer properties determined from pumping tests provide insight into the local ground-water flow system. Field and laboratory analyses of water-quality parameters were obtained over a range of flow conditions and time.

Previous Investigations

Geologic investigations in Garrett County were begun in the first quarter of the 19th century. The early investigations came about as a consequence of the area's location along transportation routes and, later, because of interest in the coal resources. Many of these reports are included in Martin's (1902) review of Garrett County geology. The coal beds and associated strata have subsequently been discussed by Clark and others (1905), Swartz and Baker (1920), Swartz, Price, and Bassler (1919), Toenges and others (1949), Waagé (1950), and Amsden (1954). Depositional environments have been described by Meckel (1967) and Presley (1979).

Overbeck (1954) discussed the occurrence of ground water, and Martin (1954) discussed the occurrence of surface water in Garrett County. These works are mostly inventories and compilations of records. Nutter and others (1980) expanded the collection of basic data for the county. Carswell and Bennett (1963) and Poth (1963) gave somewhat more detailed interpretations for geologically similar areas in western Pennsylvania, although they conceded that not enough information was available to establish details of the hydrologic system.

Documentation of water affected by acid mine drainage (AMD) includes Biesecker and George (1966), Federal Water Pollution Control Administration (FWPCA) (1969), and Hopkins (1966a, 1966b, 1966c). Efforts to gain a better understanding of production of acid mine drainage and its hydrologic effects include Emrich and Thompson (1968), Hollyday and McKenzie (1973), Barnes and Clarke (1964), Minear and Tschantz (1976), and Knight and Newton (1977).

CML-B

Figure 1.-Location of the study area.

- 30 () Stream-gaging station with stage and water-quality recorder
- GA1♂ Spring
- GA3 👌 Mine discharge

Figure 2.-Data-collection network.

Acknowledgments

The authors are grateful to the Mettiki Coal Corporation for their cooperation and the assistance of Blucher Allison, Chief Engineer; Lonnie Waller, former Chief Engineer; David Thomas, Environmental Coordinator; and George Kutchman, General Superintendent. Appreciation is expressed to the property owners who granted permission for test drilling and streamgage construction, and the valuable information and cooperation provided by many residents. Ward Staubitz, U.S. Geological Survey, provided additional discharge and quality measurements for some streams in the project area.

This project was initiated by Larry J. Nutter, formerly of the U.S. Geological Survey, and was completed under the supervision of Herbert J. Freiberger, District Chief, U.S. Geological Survey, in cooperation with the Maryland Geological Survey, Kenneth N. Weaver, Director. Additional funding was provided by the Maryland Bureau of Mines, Anthony F. Abar, Director.

GEOGRAPHY

Physiographic Setting

The study area is located in the Allegheny Plateau division of the Appalachian physiographic province. The Allegheny Plateau is a broad upland with some northeast-southwest trending ridges, underlain by sandstones, siltstones, shales, and some limestone. Broad folding has left strata with gentle to moderate dips. The maximum dip in the study area is about 18° to the southeast. The beds dip more gently on the southeast limb of the syncline in the study area.

Rock units in the stratigraphic column vary in resistance to erosion. Shales have low resistance to erosion and now form stream valleys. Highly resistant rocks, such as the basal conglomerates of the Pottsville Formation, form ridges such as Backbone Mountain. The parallel line of knobs along its southeast flank consists of remnants from a later, lower surface that has not yet been obliterated by more recent headward stream incision.

Basin Geomorphology

The Allegheny Plateau in southwestern Garrett County has been deeply incised by streams. Drainage in the study area is of a somewhat rectangular pattern, with several reaches of some streams perpendicular to each other. The major streams draining the study area are Laurel Run and Sand Run, both of which discharge into the North Branch of the Potomac River. Sand Run is formed by the confluence of the North Fork and South Fork. Land slopes are quite steep along portions of some streams and along Backbone Mountain. (Slope maps at a scale of 1:24,000 are available for the Table Rock and Davis quadrangles from Maryland Geological Survey in Baltimore, Md.). The profiles of the major stream channels are shown in figure 3. Beaver dams have ponded several reaches of the main streams, and additional ponds were constructed by the Mettiki Coal Corporation for water-supply and water-quality-control purposes.

Three drainage basins were selected for detailed study (North and South Forks of Sand Run, and Laurel Run), and their boundaries drawn using 1:24,000-scale topographic maps (fig. 4). Three stream-gaging stations were constructed for this study in order to monitor the output generated by the area upstream from each gage.

A number of processes are at work in each of the drainage basins. These include the components of the hydrologic cycle—precipitation, runoff, evaporation, and transpiration—that are, in turn, affected by other factors such as temperature, wind velocity, and soil characteristics. Some of the hydrologic-cycle processes affect other features of the basins through erosion, sedimentation, swamp formation, and chemical reactions. Some of man's activities have altered the rates and relative importance of some of these natural processes.

The present study is concerned with the impact of the Mettiki mines, but the effects of earlier activities in creating current basin conditions must be considered. The most significant impacts in the area, prior to the Mettiki operations, came about as the result of earlier underground coal mining near Kempton (fig. 11). These workings, extending over an area greater than 4 mi², drain into Laurel Run, providing a significant portion of its flow and exerting a powerful influence on the chemistry of this stream.

Other impacts of early mining include drainage divides relocated by strip mining, water transported from one basin to another, altered infiltration characteristics of soil and accelerated rates of chemical reactions between water and minerals resulting in corrosive, acid streams flowing out of the mined area.

Figure 3.-Channel profiles of North Fork, South Fork, and Laurel Run.

Drainage basins can be described by a number of geomorphic characteristics (table 1). These can be measured in the field or from a map, or can be computed from measured values. The characteristics in table 1 describe the size and shape of each of the three basins and the degree of stream development in each. Such factors have a bearing on how effectively water is routed through the basin. For stream-length measurements, stream lines were extended to the furthest notched contour (Morisawa, 1957). The stream lengths in table 1 were measured from those shown in figure 5, but at the original scale of 1:24,000. The tabulated parameters are for those portions of the drainage basins above the outlet gaging stations.

Laurel Run appears to have the highest drainage density of the three basins, and the North Fork, the

least. It may be expected, therefore, that Laurel Run would have the greatest annual runoff and the greatest high flows per square mile. However, the data (table 3) indicate that the highest daily mean flows per square mile occur in the South Fork. This is probably due to discharges to the South Fork from the acid mine drainage (AMD) treatment facility, which includes mine pumpage from the Laurel run basin.

Some investigators (Carlston, 1963) have found base flow to be inversely proportional to drainage density. Low flows per square mile in Laurel Run appear generally higher than in the other two streams. Again, water transfers in the South Fork basin overshadow that stream's flow characteristics. Flow in Laurel Run during periods of generally low flow may be elevated by the contribution from the Kempton mine drainage.

Figure 5.-Stream-channel traces derived from topographic map.

Table 1.-Geomorphic characteristics of the North Fork, South Fork, and Laurel Run basins.

Pacin	Distance of gage	nce ge Order	Number of first- rder order	Drainage	Basin	Circularity	Main channel	A	Average	Altitude (ft)		Mauriana			
Basin	mouth (mi)	gage ¹	above gage	at gage (mi ²)	at gage (mi)	ratio ²	(mi) to gage	density (mi/mi ²)	slope (ft/mi)	Maximum	Minimum (at gage)	Median	relief (ft)	ratio ³	integral"
North Fork	0.05	3	22	1.91	7.9	0.38	2.77	6.73	161	3,252	2,515	2,737	737	0.06	0.3585
South Fork	.48	3	35	1.55	6.7	.43	3.15	9.30	129	3,250	2,535	2,704	710	.07	.2761
Laurel Run	1.18	5	343	8.23	13.9	.54	6.04	10.47	127	3,410	2,575	2,771	835	.04	.2822

¹ Strahler (1954) system of stream ordering.

² Miller, 1953, p. 8.
³ Schumm, 1956, p. 612.

4 Strahler, 1952.

Climate

Air masses from the North American interior provide Garrett County with a humid, continental climate. The prevailing winds are west to northwest, becoming more southerly in the summer.

The National Weather Service station in Oakland, Md., is approximately 11 mi from the center of the study area. Table 2 shows mean monthly and mean annual temperatures recorded at this station (NOAA, 1973). The mean annual temperature reported for the period 1941-70 is 47.8°F.

Table 2.—Mean	temperatures	and p	recipitation	at
Oaklar	nd, Md., for th	ne perio	d 1941-70	

Month	Mean temperature (°F)	Mean precipitation (in.)
January	27.5	3.84
February	28.8	3.33
March	36.0	4.68
April	47.7	4.28
May	56.7	4.48
June	64.3	4.28
July	67.4	4.78
August	66.5	4.36
September	60.2	3.09
October	50.4	2.91
November	39.4	3.27
December	29.2	3.81
Annual	47.8	47.11

The mean annual precipitation reported at Oakland, Md., is 47.11 in. (table 2). Mean monthly precipitation for March through August exceeds the average mean monthly (3.93 in.); mean monthly precipitation for the rest of the year, although below that average, is still abundant.

Much of the year's precipitation falls as snow, which may occur as early as September and as late as May. Snow cover can be several feet.

A rain gage is maintained at the main office of the Mettiki mine, and daily records were provided by the company. The location of the gage is shown in figure 2.

Soils and Vegetation

The study area is located within the Dekalb-Gilpin-Cookport soil association, which closely corresponds with the Upper Potomac and Georges Creek structural basins. This soil association consists of gently sloping to steep, moderately deep, well-drained and moderately well-drained, very stony soils that formed over acid, gray to yellowish sandstone and shale (Stone and Matthews, 1974, p. 5). The Cookport soils are characterized by a fragipan, which impedes drainage and results in seasonally perched water. Steep slopes and stoniness limit suitability for cultivation. Areas that have been strip mined for coal or have been covered with spoil from underground mining operations are also unsuitable. However, some of the abandoned strip-mine areas have recently been improved by regrading and seeding.

The native timber in the study area has long since been cut, and much of the area has been replanted with hardwoods and conifers (Curran, 1902). Mountain laurel is still common in some parts of the study area. A sphagnum bog exists in the south-central area, but is not large enough to be of commercial interest. Areas cleared for agriculture are used mainly for pasture and hay.

Stratigraphy

The rocks exposed in the study area are all of the Pennsylvanian System (fig. 6) and represent a transition from an alluvial plain to a shallow marine environment. The stratigraphic interval is described by Swartz and Baker (1920). A drilling program conducted by the U.S. Bureau of Mines in 1945-46 provided additional information on the stratigraphy and lithologies of the coal basins (Toenges and others, 1949). More recently, stratigraphic work and depositional environment studies have been carried out in Pennsylvania (Flint, 1965), West Virginia (Donaldson and others, 1979), and Maryland (Harvey, 1974). The stratigraphic nomenclature used in this report is that of recent workers in Maryland and does not necessarily follow the usage of the U.S. Geological Survey.

Figure 6.-Generalized geologic column for study area.

The environmental transitions that resulted in the deposition of the various formations found in the study area are shown in figure 7. The oldest rocks exposed belong to the Pottsville Group, which lies disconfor-

mably on the Mississippian Mauch Chunk Formation. This unit consists primarily of sandstone and siltstone and includes some thin coalbeds that are not economically important. The Pottsville Group was formed by sediments distributed by a braided fluvial depositional system (Presley, 1979). Well-indurated sandstone of this unit forms the Backbone Mountain ridge.

The Allegheny Group is exposed downslope from the Pottsville, but the two are similar and can be difficult to distinguish. The Allegheny Group has some thick coalbeds, but only the Upper Freeport is economically significant in the study area. Allegheny sediments in Maryland represent the upward transition from a braided fluvial system to a delta plain system, which formed as the shoreline receded southeastward (Presley, 1979).

The Conemaugh Group underlies the rest of the study area (southeast of the strip mines), but erosion has removed much of its upper portion. The highest part of the stratigraphic section found during this study was at site 3, which is on a hilltop. At this site, a coalbed (tentatively identified as the Middle Hoffman coal) was penetrated about 25 ft below land surface. The Conemaugh Group consists of siltstone, sandstone, shale, and coal, and represents the shallow marine stage in the Pennsylvania transgressional sequence (Preslev, 1979). The marine influence was not as strong during Conemaugh deposition as it was to the west and northwest of the study area. An indication of this is that the Ames Member in the study area, where present, is a thin shale. To the northwest, however, it is a limestone. The stratigraphic boundary between the lower Glenshaw Formation and the upper Casselman Formation has usually been put at the top of the Barton Coal (Elk Lick of Pennsylvania-West Virginia). However, some workers consider the absence of marine beds above the Ames marine shale (which lies on top of the Harlem coal) a justification for placing the boundary at the Ames, as proposed by Flint (1965, p. 70-73). Red shales characteristic of the Conemaugh are absent in the Allegheny and Pottsville Groups. The Lower Bakerstown coal is the only coal in the Conemaugh Group of economic importance in the study area, but is of a mineable thickness in less than one-third of this area.

Recent deposits include floodplain sediments and colluvial deposits at the toeslopes of hills, but these are of limited extent. Organic deposits occur in several small bogs.

Lithologic and geophysical logs for some of the wells drilled for this study are in appendix B. The logs do not indicate sharp contrasts between groups, but do show considerable variation within groups.

EXPLANATION

Figure 7. – Environmental transitions from late Mauch Chunk through early Conemaugh time (from Presley, 1979).

Geologic Structure

The geologic structure of Garrett County was described by Darton and Taff (1896), and by Martin (1902). The strata have been uplifted and pushed into low folds, forming five synclines (coal basins) and three anticlines (fig. 8). The study area lies within the Upper Potomac syncline, which has a shallow northeast plunge in the study area. This syncline is evident in figure 9 from the structure contours drawn on the base of the Upper Freeport coal. No significant faults are present in the study area, but the rocks are jointed. Fracture traces, drawn from linear features visible on aerial photographs, are shown in figure 10. The accompanying rose diagram of fracture orientations indicates a preferred north-northwest/ south-southeast orientation, and a scarcity of northeastsouthwest fractures. Larger linear features detected on satellite photographs indicate tectonic stress fracturing, and some of these may correspond to zones of weak roof rocks and concentrated zones of water seepage into the mines.

West Virginia

Figure 9. – Altitude of the base of the Upper Freeport coal of the Allegheny Group.

Figure 10.-Linear features (fracture traces), and fracture orientation-frequency rosette.

Previous Mining Activity

Commercial coal mining in western Maryland began around 1830 in the Georges Creek basin. Because of transportation difficulties, mining did not begin in Garrett County until near the end of the century. There are several abandoned mines in the study area (fig. 11). The Upper Freeport coal was surface-mined along its outcrop area near the base of Backbone Mountain. Beginning in 1914, the Davis Coke and Coal Company's Kempton Mine, located in the southwestern part of the study area, extracted coal from depths ranging from about 50 to 700 ft using the room-and-panel system of mining. Mine shafts were located in Kempton and mining followed approximately the strike of the coal into West Virginia. The Upper Freeport coal was also mined in West Virginia across the North Branch of the Potomac River from the study area (Mine No. 33). The Lower Bakerstown coal, which is about 150 to 200 ft above the Upper Freeport, has been mined by underground methods in both the northern (Buffalo Coal Company Mine No. 1) and the southeastern (Davis Coke and Coal Company Mine No. 22) parts of the study area.

Current Mining Activity

The Mettiki Coal Corporation operates the only active mine in the study area. The Mettiki mine actually consists of three separate mines (fig. 12): Beaver Run (A Mine), Gobblers Knob (B Mine), and Big George (C Mine). Mining is being done by the room-and-pillar method, with extraction of pillars upon completion of the side entries. Retreating is being done in the downslope direction. All the Upper Freeport coal within the boundaries shown in figure 12 is to be removed, except for some areas below existing structures (subsidence control blocks, where regulations allow only 50 percent extraction), and at the mine boundaries, where barrier pillars of various widths (approximately 50 to 200 ft) will remain intact. The company also may mine the Lower Bakerstown coal, which is thinner, shallower, less extensive, but of higher quality than the Upper Freeport coal. If the Lower Bakerstown is mined, it will be done before the Upper Freeport extraction operations reach those areas.

Mettiki began operation in the summer of 1977 (A Mine) and plans to operate for approximately 20 years. The B Mine started up about 6 months after A, and the C Mine began about 1 year after A. Full production capacity (about 600 tons per shift) was reached in May 1980. Full employment involves about 535 persons. Figure 13 shows the extent of mining near the beginning (Aug. 1978) and at the end of the study period (July 1981). Significant progress not only in coal extraction, but also in the construction and operation of related facilities had been made before the data network was completed. About one-third of Mettiki's output is steam coal, which is sold locally and exported through Baltimore, Md. The rest is exported under contract for use in steel production. The Mettiki holdings constitute approximately 4.8 percent of Maryland's recoverable coal reserves (Kosnett, 1981, p. 38).

The Buffalo Coal Company, although not operating any mines within the study area, does operate a tipple near Wilson, W. Va. Coal from five West Virginia mines is loaded here.

EXPLANATION

Figure 11.-Abandoned surface and underground coal mines.

Figure 12.—Boundaries of the Mettiki Mine (Upper Freeport coal of the Allegheny Group) and approximate extent of mineable Lower Bakerstown coal of the Conemaugh Group.

Figure 13.-Extent of Mettiki mines at the beginning and end of the study period.

Components of Streamflow

Streamflow is derived from several sources—direct precipitation onto the stream channel; overland flow, which reaches a channel without having infiltrated into the ground; interflow, which infiltrates into the ground and moves laterally through the soil without having reached the ground-water body; and ground-water (base) flow, the slowest moving portion of contributing flow, which enters the stream channel if the channel intersects a ground-water body having a hydraulic gradient toward the stream.

In Garrett County, precipitation is generally abundant throughout the year and major contributions to streamflow come from small areas adjacent to the lower-order streams. Saturated conditions are maintained in these areas by frequent precipitation, so excess moisture cannot infiltrate during storms but flows over the surface toward the stream channel. Rain falling on areas distant from stream channels primarily replenishes soil moisture but, if of sufficient quantity, percolates downward to the zone of saturation. Overland flow is more extensive in winter when frozen ground prevents infiltration. Infiltration characteristics have been altered in areas that were strip mined and depend upon the degree of compaction and reworking of the spoil material.

The natural streamflow components have been modified in the study area. Laurel Run and the North Fork receive water discharged from abandoned coal mines (fig. 2). These discharges may be considered additions to base flow because they involve the main ground-water system and flow rather consistently. The mine voids do, however, act as conduits and allow more rapid flow than do the natural geological materials. Laurel Run and the South Fork receive discharge of treated mine water, and coal-treatment process water is removed from the South Fork. Water is lost through evaporation during this process, and also is used for dust control of coal loaded on railroad cars. Water that drains off the coal piles is piped to the AMD treatment plant. These contributions and withdrawals modify the shape of the natural hydrograph.

Flow Characteristics

Occasional streamflow measurements began in June 1979. Gaging stations on the three main streams (fig. 2) began operation in the spring of 1980, as did measurements at other noninstrumented sites. Discharge hydrographs, precipitation, and mine pumpage records for the period May 1, 1980, to Sept. 30, 1981, are shown in figure 14. The low flows in January and July-August were not due to lack of precipitation. The low flows in January were due to storage of precipitation as snow cover, while those of July-August resulted from precipitation replenishing soil moisture that had been depleted by transpiration and evaporation.

Table 3 summarizes streamflow at the three gaging stations for the 1981 water year (Oct. 1, 1980, to Sept. 30, 1981). As discussed in the previous section, streamflows have been affected by mining operations, and routing of inputs and withdrawals needs to be considered for making interpretations of flow processes, streamflow statistics, and water chemistry. Inputs related to mining operations include approximately 4,000 to 5,000 gal/d (535 to 670 ft³/d) of sewage from each mine's facility, and about 700,000 gal/d $(90,000 \text{ ft}^3/\text{d})$ each from A and B Mine dewatering that are treated and discharged into the South Fork. Pumpage from the C Mine (about 700,000 gal/d, or 90,000 ft³/d) is treated in a separate plant and discharged into Chestnut Ridge Run, a tributary of Laurel Run (David Thomas, Environmental Coordinator of Mettiki Coal Corp., oral commun., 1981). Mine pumpage is reported monthly (fig. 14), but pumpage may vary considerably from day to day.

	Highe	st daily mean	Lowes	t daily mean	Ann	ual mean	Annual runoff	
Station	ft ³ /s	(ft ³ /s)mi ²	ft ³ /s	(ft ³ /s)mi ²	ft ³ /s	(ft ³ /s)mi ²	in./yr	
North Fork	47	24.6	0.32	0.168	4.79	2.51	33.7	
South Fork	52	33.5	.02	.013	3.7	2.4	33*	
Laurel Run	260	31.6	3.4	.413	26.4	3.21	43.1	

Table 3.-Summary of streamflow in North Fork, South Fork, and Laurel Run, for water year 1981

*Estimated; record incomplete.

Figure 14.—Mine pumpage, stream discharge, and precipitation for the period May 1, 1980, to September 30, 1981.

Monthly discharge values are shown for the period May 1, 1980, to September 30, 1981, in table 4. The lowest 7-consecutive-day low flows for the same period are shown in table 5. Flow modifications in the study area are too great to allow accurate estimation of recurrence intervals; therefore, only the flows measured during the period of the study are presented. Figure 15 indicates the percentage of daily mean discharges for the period May 1, 1980, to September 30, 1981, that equaled or exceeded the indicated flow, and does not imply the recurrence interval of flow.

Flow was measured periodically at five additional sites to help determine tributary contributions to total discharge measured at the gaging stations. Figure 16 shows flows at upstream and tributary sites related to flows at the gaging stations. These relationships should be linear, under natural circumstances, because the tributary or upstream site represents a constant fraction

	Discharge, in cubic feet per second						
Date	North Fork	South Fork	Laurel Run				
1980							
May	5.31	4.12	32.4				
June	6.12	5.30	37.2				
July	5.26	4.96	32.3				
August	7.91	7.15	40.2				
September	1.14	(1)	9.66				
October	.82	.97	7.90				
November	3.77	3.41	28.8				
December	3.79	3.25	24.4				
1981							
January	1.18	1.26	8.85				
February	7.14	5.90	44.5				
March	6.50	5.10	36.1				
April	9.54	6.69	44.8				

Table 4.—Monthly mean discharge at North Fork, South Fork, and Laurel Run

¹Record incomplete for these months.

May

June July

August

September

of the drainage basin. The deviation from linearity between the South Fork sites is probably due to additions of treated mine-drainage water and withdrawals from the makeup water pond located between the two sites.

5.81

1.91

.92

3.42

12.7

4.57

2.11

(1)

(1)

10.1

34.8

62.8

8.72

5.14

9.56

Stream-Seepage Investigation

Seepage measurements were made during low-flow conditions on November 5-6, 1980; June 30-July 1, 1981; and August 12-13, 1981. During the first run, streamflow measurements were made at 18 sites (8 in the Sand Run basin and 10 in the Laurel Run basin). For subsequent runs, two sites were added to the Sand Run basin and three were added to the Laurel Run basin. The second run was interrupted by heavy rain (0.63 in. on July 1, 1981), so all 23 sites were measured again on August 12-13, 1981. Temperature, specific conductance, pH, and dissolved oxygen were measured at all sites, and samples for field alkalinity and laboratory analyses were obtained from several sites.

Streamflow and water-quality data from the three seepage runs are shown in table 6. Site locations and values of discharge, pH, and specific conductance measured during the November 1980 and August 1981

Station	Discharge (ft ³ /s)	Discharge/ basin area [(ft ³ /s)/mi ²]	Period		
North Fork	0.37	0.193	10/18/81 — 10/24/81		
South Fork*	.20	.130	10/13/81 — 10/19/81		
Laurel Run	3.50	.425	8/24/81 — 8/30/81		

Table 5.—Lowest 7-day flows at North Fork, South Fork, and Laurel Run, May 1, 1980, to September 30, 1981

*Record missing for period August 21, 1981, to September 16, 1981; also August 24, 1980, to August 31, 1980.

investigations are shown in figure 17. Drainage areas (totals and increments) are included in the tables. In some cases, however, streamflow includes mine drainage or treated wastewater discharge which is derived in whole or in part from outside the drainage basin of that stream. The first and third runs show a losing reach above the gage on the South Fork (site I), with the August 1981 loss being quite substantial. During the June 30, 1981, run, a release from the AMD treatment plant, located upstream of site H, was included in the discharge measurements at sites H and I. During the August 12, 1981, run, the plant released treated water after site I was measured, but before site H was measured, accounting for the apparent large loss between those sites. If site H is not considered for the August 12 run, a small but positive gain occurred between sites G and I.

Treated AMD is discharged into the South Fork above the makeup water pond from which water is withdrawn to wash coal, mix a latex spray for the coal loaded on the train, and for other purposes, such as watering revegetated areas. Lack of detailed metering of these preclude accurate seepage determinations along this reach. Although seepage losses were clearly not evident during the seepage runs, the level of water in well FB 25 (about 5 ft below the stream level) and the elevated sulfate content of the well water suggest that the South Fork may, at times, be losing water between stations H and J.

The reach between sites T and U and U and V on Laurel Run also showed losses for the August 1981 run. About 2,000 ft of Laurel Run above site U had been undermined (main and side headings — no pillars removed) and mine headings approached within several hundred feet below the reach from U to V since the November 1980 seepage run. Nearby Chestnut Ridge Run may also have lost water through its bed, but it receives treated AMD from the C Mine, which may overshadow seepage losses. Discharge into Laurel Run from the Kempton Mine at site L was the same $(1.34 \text{ ft}^3/\text{s})$ for the November 1980 and the August 1981 runs, even though streamflow was considerably less in August. This suggests a uniform discharge from the abandoned Kempton mine. Hollyday and McKenzie (1973) measured a discharge of 3.7 ft³/s in August 1970 from another larger opening about 1,500 ft away. That site was inaccessible during this study.

Surface-Water Quality

Previous mining activities have had an impact on surface-water quality, and such impacts are most pronounced in Laurel Run. According to local residents, Laurel Run once supported trout (which are intolerant of low pH water); now, however, only the headwaters of the stream above the old strip-mined area and drainage from the Kempton Mine support fish. The input from the Kempton Mine discharge exerts a strong control on that stream's chemistry, as discussed below. The North Fork also receives drainage from an underground mine, but evidently this contribution is a smaller proportion of the stream's total flow, at least for most of the time. The South Fork receives treated AMD, averaging about 1 Mgal/d. Water is removed intermittently from the makeup water pond located just upstream from the gaging station. This water is used chiefly for processing the coal. Some is also used for mixing with latex for coal-dust control of loaded railroad cars and some is used for seeding the reclaimed areas in the summer. These withdrawals were not metered during the period of the study. At the lower end of Sand Run, just upstream of Wilson, runoff from the coal piles at the loading area of another coal company entered the stream. Efforts made to neutralize this runoff by spreading lime and soda briquettes where drainage concentrated were not adequate. Finally, in-

Figure 16.-Relation of streamflows at upstream and tributary sites to streamflows at the gaging stations.

Table 6.—Results of stream-seepage investigation.

				Total	Incremental	Ratios						
		Total discharge	Incremental discharge	drainage area	drainage area	Q/A	Q'/A'	Q'/mi of reach	Temperature,		Specific	Oxygen,
Site	Stream	$Q(ft^3/s)$	Q' (ft ³ /s)	A (mi ²)	A' (mi ²)	[(ft ³ /s	s)/mi ²]	[(ft ³ /s)/mi]	water (°C)	pН	conductance (µmhos)	dissolved (mg/L)
A B C D E	NOVEMBER 5, 1980 North Fork upstream from Moon Ridge North Fork at Moon Ridge North Fork upstream from gage North Fork near Wilson Buffalo Coal Mine discharge	0.26 .32 .73 1.77	0.26 .06 .41 1.04	0.53 .96 1.66 1.91	0.53 .43 .70 .25	0.49 .33 .44 .93	0.49 .14 .59 4.16	0.14 .43 2.74	7.3 6.7 5.8 6.1	5.1 3.9 5.7 6.3	56 122 211 185	9.8 11.0 10.4 11.0
F G H	South Fork at Pole #15 South Fork at Moon Ridge South Fork between AMD	.09 .59	.09 .50	.58 .91	•58 •33	.16 .65	.16 1.52	.83	6.2 5.7	6.9 6.9	487 315	9.7 9.7
I J	and pond South Fork near Wilson Sand Run at Wilson	.48 2.63	11 1.69	1.55 3.94	.64 .48	.30 .67	17 3.52	16	6.3 5.7	6.9 6.9	620 447	9.2 9.9
K M N O	NOVEMBER 6, 1980 Laurel Run, Kempton strip mine area Kempton Mine discharge Tributary to left bank, Laurel Run Tributary to right bank, Laurel Run Chestnut Ridge Run near Red Oak	1.34 .23 .14 1.68	1.34 .23 .14 1.68	 .34 .15 1.98	 .34 .15 1.98	 .68 .93 .85	 .68 .93 .85		10.2 4.1 4.9 4.0	3.1 5.9 5.6 5.9	862 23 20 168	0.7 10.5 10.5 10.5
P Q R S T	2nd. tributary to right bank, Laurel Run Dutch Run near Red Oak Dutch Run at confluence, Laurel Run Laurel Run headwaters, downstream from Site L Laurel Run, near Mettiki boundary	.60 .88 .31	.60 .28 .31	1.39 1.51 .32	1.39 .12 .32	.43 .58 .97	.43 2.33 .97		5.3 5.0 5.6	4.9 5.4 6.2	120 109 32	10.3 10.9 10.2
U V W	Laurel Run near Red Oak Laurel Run at Dobbin Road Laurel Run, near confluence of	7.08 10.2	5.06 .56	3.31 8.23	2.50 3.15	2.14 1.24	2.02 .18	2.42 .37	2.2 4.0	3.1 3.0	541 406	11.4 11.6
A B C D E	North Branch Potomac River JUNE 30, 1981 North Fork upstream from Moon Ridge North Fork at Moon Ridge North Fork upstream from gage North Fork near Wilson Buffalo Coal Mine discharge	1.03 1.26 3.16 3.33 .13	.7 .23 1.90 .17 .13	.53 .96 1.66 1.91	.64 .53 .43 .70 .25	1.23 1.94 1.31 1.14 1.74	1.09 1.94 .53 2.71 .68	.62 .53 1.86 .44	3.7 18.0 19.6 18.0 15.5	4.1 5.4 5.1	328 56 144 133 	8.2 7.0 7.9 8.1
F G H	South Fork at Pole #15 South Fork at Moon Ridge South Fork between AMD	.62 .99	.62 .37	.58 .91	•58 •33	1.07 1.09	1.07 1.12	.62	19.3 17.0	6.4 6.7	235 206	8.1 8.4
I J	and pond South Fork near Wilson Sand Run at Wilson	2.67* 3.38 7.01	1.68 .71 .30	1.55 3.94	.21 .48	2.18 1.78	3.38 .63	1.73	19.4 18.9 17.8	6.5 6.6 7.8	924 570 405	8.4 8.4 8.6

* AMD Plant release

Table 6.-Results of stream-seepage investigation-Continued.

				Total	Incremental	Ratios						
		Total discharge	Incremental discharge	drainage area	drainage area	Q/A	Q'/A'	Q'/mi of reach	Temperature,		Specific	Oxygen,
Site	Stream	$Q(ft^3/s)$	Q' (ft ³ /s)	A (mi ²)	A' (mi ²)	[(ft ³ /s	;)/mi ²]	$[(ft^3/s)/mi]$	water (°C)	pH	(µmhos)	(mg/L)
	JULY 1, 1981											
0 P	Discontinued because of rain Chestnut Ridge Run near Red Oak 2nd tributary to right bank	2.0	2.0	1.98	1.98	1.01	1.01		15.2	5.7	178	8.2
	Laurel Run	0.25	0.25	0.51	0.51				15.1	4.9	16	
R	Dutch Run at confluence, Laurel Run	1.12	.16	1.59	1.39	.74	1.33		18.2	5.3	97	7.2
U	Laurel Run near Red Oak	10.4		3.31		3.14			14.2	2.6	731	8.8
V	Laurel Run near Dobbin Road	10.4		8.23		1.27			15.5	2.8	568	8.8
'n	North Branch Potomac River	13.7	3.3	8.87	.64	1.54	5.16		16.8	2.6	533	
	AUGUST 12, 1981											
A	North Fork upstream from Moon Ridge	.03	.03	.53	.53	.057	.057		19.3	5.9	31	4.1
B	North Fork at Moon Ridge	.35	.32	.96	.43	.365	.744	0.74	20.2	6.5	46	8.1
D	North Fork upstream from gage	.80	.38	1.91	.25	.419	1.520	1.31	19.1	5.7	165	8.3
Е	Buffalo Coal Mine discharge	.00	.00									
F G	South Fork at Pole #15 South Fork at Moon Ridge	.12	.12	.58 .91	• 58 • 33	.207	.207	0	18.8 19.8	5.3	847 678	7.4
Н	South Fork between AMD and pond	2.58*	2.46						21.6	7.3	1.211	8.4
I	South Fork near Wilson	.15	.03	1.55	.64	.097	.05	-5.85	21.3	6.0	959	6.6
J	Sand Run at Wilson	1.22	.27	5.94	.40	.310	.50		19.3	7.1	727	0.0
K	AUGUST 13, 1981 Laurel Run. Kempton strip mine area	.10	.10	.82	.82				15.7	3.5	148	8.6
L	Kempton Mine discharge	1.34	1.34						10.3	3.8	773	0.5
M	Tributary to left bank, Laurel Run Tributary to right bank, Laurel Run	.04	.04	. 34	• 34 • 15	.118	.118		15.2	5.7		8.3
0	Chestnut Ridge Run near Red Oak	.85	.85	1.98	1.98	.429	.429		20.2	4.0	780	11.8
Ρ	2nd. tributary to right bank,	OF	05	53	53				26.4	E O	27	
Q	Dutch Run near Red Oak	.18	.18	1.39	1.39	.129	.129		20.7	5.6	135	6.0
R	Dutch Run at confluence, Laurel Run Laurel Run headwaters downstream	.26	.08	1.51	.12	.172	.667		18.4	5.9	128	5.6
5	from Site L	.03	.03	.32	.32	.094	.094		16.8	6.7	71	8.9
Т	Laurel Run, near Mettiki boundary	4.01		2.33	1.21			2.31	18.9	2.7	926	8.6
U	Laurel Run near Red Oak	3.67	39	3.31	.42	1.109		39	18.6	2.4	1,001	7.1
Ŵ	Laurel Run, near confluence of	4.07	-1.10	0.29	1.49	. 907		/0	10.2	2.0	072	9.0
	North Branch Potomac River	5.39	.72	8.87	.64	.608	1.125	.64	18.0	4.3	836	8.7

* AMD Plant release

Figure 17.-pH, specific conductance, and discharge at the seepage-investigation sites.

	NUMBER OF SAMPLES	MAXIMUM	MINIMUM	MEDIAN	MEAN
LAUREL	RUN NEAR RED OAF	C, MARYLAND (Sit	e 23)		
pH	6	3.1	2.6	3.1	
Specific conductance (µmhos)	6	915	297	652	631
Alkalinity field $(mg/L as CaCO_2)$	0				
Acidity (mg/L as CaCO3)	5	159	74	104	108
Solids, sum of constituents (dissolved)	6	397	139	285	279
Turbidity (Nephelometric Turbidity Units)	1	6	6	6	6
Calcium, dissolved (mg/L as Ca)	6	41	14	29	28.6
Magnesium, dissolved (mg/l as Mg)	6	17	5.9	11.5	11.8
Sodium, dissolved (mg/L as Na)	6	5	1.4	3.1	3.1
Potassium, dissolved (mg/l as K)	6	2.6	1.1	1.9	1.9
Iron, dissolved (mg/L as Fe)	6	12	7.2	10.5	10.2
Aluminum, dissolved (µg/L as Al)	0				
Manganese, dissolved (mg/L as Mn)	6	1.6	0.57	1.2	1.2
Sulfate, dissolved (mg/L as SO4)	6	290	91	200	199
Chloride, dissolved (mg/L as C1)	6	2	.8	1.8	1.6
Oxygen, dissolved (mg/L)	3	23	8.8	10.3	14
Silica, dissolved (mg/L as SiO ₂)	6	25	11	19	18.7
Nitrogen, $NO_2 + NO_3$, dissolved (mg/L as N)	6	1.1	.04	0.22	.33
CHESTNUT RI	DGE RUN NEAR RED	OAK, MARYLAND	(Site 26)		
	7	6.9	4.0	5.7	
	6	540	78	162 5	208 5

Table 7.—Summary of surface-water quality at gaged and ungaged sites in the study area. [Numbers following the station location refer to location on figure 2]

CHESTNUT RID	GE RUN NEAR RED	OAK, MARYLAND (S	ite 26)		
рН	7	6.9	4.0	5.7	
Specific conductance (µmhos)	6	540	78	162.5	208.5
Alkalinity field (mg/L as CaCO3)	1	8	8	8	8
Acidity (mg/L as CaCO3)	6	10	5	5	5.8
Solids, sum of constituents (dissolved)	6	364	53	102.5	134.8
Turbidity (Nephelometric Turbidity Units)	1	8.1	8.1	8.1	8.1
Calcium, dissolved (mg/L as Ca)	6	73	8.5	18.5	25.4
Magnesium, dissolved (mg/L as Mg)	6	15	2.6	4.5	4.6
Sodium, dissolved (mg/L as Na)	6	7.3	0.8	2.2	2.7
Potassium, dissolved (mg/L as K)	6	3.6	.8	1.3	1.6
Iron, dissolved (mg/L as Fe)	6	0.22	.09	0.16	0.10
Aluminum, dissolved (µg/L as Al)	0				
Manganese, dissolved (mg/L as Mn)	6	1.4	.31	.48	. 59
Sulfate, dissolved (mg/L as SO4)	6	250	26	56.5	83.3
Chloride, dissolved (mg/L as Cl)	6	3.5	1.3	2	2.2
Oxygen, dissolved (mg/L)	4	12	7.6	10.6	10.2
Silica, dissolved (mg/L as SiO ₂)	6	6.9	4.2	4.9	5.1
Nitrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	6	1.3	.3	. 6	.7

DUTCH RUN AT RED OAK, MARYLAND (Site 29)

	6	6 /	4 5	5 1	
pH	0	0.4	4.5	100	105
Specific conductance (µmhos)	5	165	98	120	125
Alkalinity field $(mg/L \text{ as } CaCO_3)$	0				
Acidity (mg/L as CaCO3)	4	10	5	5	6
Solids, sum of constituents (dissolved)	4	102	67	73	79
Turbidity (Nephelometric Turbidity Units)	0				
Calcium. dissolved (mg/L as Ca)	5	18	9.4	13	12.9
Magnesium, dissolved (mg/L as Mg)	5	4.8	2.9	3.8	3.8
Sodium dissolved (mg/L as Na)	5	1.5	0.7	0.9	1.0
Potassium dissolved (mg/L as K)	5	1.7	.8	.9	1.1
Trop discolved (mg/L as Fe)	5	1.3	.26	.85	0.78
the dissolved (mg/L as re)	0				
Manganese, dissolved (mg/L as Mn)	5	1.3	.89	1.2	1.2
Sulfate discolud (mg/L ac S0.)	5	61	36	43	44.2
Sullate, dissolved (mg/L as 504)	5	2 4	1.4	1.4	1.7
chioride, dissolved (mg/L as CI)	5	10.3	5 /	6.0	7 1
Oxygen, dissolved (mg/L)	5	10.3	J.4 / E	6.0	4 0
Silica, dissolved (mg/L as SiO ₂)	5	5.2	4.5	4.0	4.5
Nitrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	5	0.9	.1	• 3	.4
Table 7.-Summary of surface-water quality at gaged and ungaged sites in the study area-Continued. [Numbers following the station location refer to location on figure 2]

	NUMBER OF SAMPLES	MAXIMUM	MINIMUM	MEDIAN	MEAN
LAUREL RUN AT	DOBBIN ROAD NEAR W	ILSON, MARYLAND	(Site 30)		
рН	21	3.8	2.4	3.0	
Specific conductance (µmhos)	20	745	143	433	454.7
Alkalinity field (mg/L as CaCO.)	9	16	0	1	2.3
Acidity (mg/L as CaCO ₃)	18	149	10	70	69.6
Solide sum of constituents (dissolved)	16	357	69	208.5	210.9
Turbidity (Nephelometric Turbidity Units)	11	19	. 4	4.9	6.7
Calcium, dissolved (mg/L as Ca)	18	42	9.8	24	23.9
Magnesium, dissolved (mg/l as Mg)	18	14	3	8.4	8.6
Sodium, dissolved (mg/L as Na)	18	14	.8	2.2	3.0
Potassium, dissolved (mg/l as K)	18	2.5	.8	1.6	1.5
Iron, dissolved (mg/L as Fe)	19	11	1.6	5	5.3
Aluminum, dissolved (µg/L as Al)	5	6,900	1,700	5,100	5,040
Manganese, dissolved (mg/L as Mn)	20	1.4	.47	0.97	0.97
Sulfate, dissolved (mg/L as SO4)	20	250	42	145	146.2
Chloride, dissolved (mg/L as Cl)	17	3.8	.9	1.6	1.7
Oxygen, dissolved (mg/L)	16	12.3	4.9	9.9	9.9
Silica, dissolved (mg/L as SiO ₂)	18	20	5.3	13	13.4
Nitrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	14	1.1	.16	.32	.38
NORTH BRANCH	POTOMAC RIVER AT W	ILSON, MARYLAND	(Site 31)		
	7	4 8	2 5		
pn Specific conductance (µmhos)	7	2,000	189	588	772
Alkalinity field $(mg/L as CaCO_2)$	5	2	0	0	0.4
Acidity (mg/L as CaCO ₃)	6	41	5	23.1	23.2

5	2	0	0	0.4
6	41	5	23.1	23.2
1	110	110	110	110
0				
1	28	28	28	28
1	3	3	3	3
1	1.1	1.1	1.1	1.1
1	0.9	.9	.9	. 9
7	2	.18	.87	.90
0				
7	.86	.24	.50	.52
7	800	68	240	325.4
1	. 9	.9	.9	. 9
7	12.5	7.7	9.1	9.8
1	4.1	4.1	4.1	4.1
1	.47	.47	.47	.47
	5 6 1 1 1 1 7 0 7 7 1 7 1 7	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

SOUTH FOR	RK AT MOON RIDGE	E, MARYLAND (Site	32)		
pH	5	7.0	6.3	6.8	
Specific conductance (µmhos)	4	678	183	261	346
Alkalinity field $(mg/L as CaCO_2)$	0				
Acidity (mg/L as CaCO3)	2	5	0	2.5	2.5
Solids, sum of constituents (dissolved)	4	457	111	158	221
Turbidity (Nephelometric Turbidity Units)	0				
Calcium, dissolved (mg/L as Ca)	4	71	21	28.5	37.3
Magnesium, dissolved (mg/L as Mg)	4	14	4	4.9,	6.9
Sodium, dissolved (mg/L as Na)	4	48	3.1	17.1	21.3
Potassium, dissolved (mg/L as K)	4	3	1.1	1.7	1.9
Iron, dissolved (mg/L as Fe)	4	0.18	.06	0.11	0.12
Aluminum, dissolved (µg/L as Al)	0				
Manganese, dissolved (mg/L as Mn)	4	1.7	.12	.16	. 54
Sulfate, dissolved (mg/L as SO4)	4	300	56	82.5	130.3
Chloride, dissolved (mg/L as Cl)	4	2.2	1.1	1.7	1.7
Oxygen, dissolved (mg/L)	3	9.7	8.4	9.5	9.2
Silica, dissolved (mg/L as SiO2)	4	7.4	3.7	4.4	5.0
Nitrogen, NO2 + NO3, dissolved (mg/L as N)	4	. 59	.34	. 47	.47

Table 7.-Summary of surface-water quality at gaged and ungaged sites in the study area-Continued. [Numbers following the station location refer to location on figure 2]

	NUMBER OF SAMPLES	MAXIMUM	MINIMUM	MEDIAN	MEAN
SOUTH F	FORK NEAR WILSON	, MARYLAND (Site	34)		
рН	17	7.1	4.2	6.5	
Specific conductance (µmhos)	16	959	125	452.5	442.1
Alkalinity field $(mg/L as CaCO_2)$	8	28	0	17.1	15.1
Acidity (mg/L as CaCO ₃)	12	20	0	5	7.9
Solids, sum of constituents (dissolved)	15	683	65	373	296.4
Turbidity (Nephelometric Turbidity Units)	10	45	.6	2.0	10.1
Calcium, dissolved (mg/L as Ca)	15	170	13	81	70.5
Magnesium, dissolved (mg/1 as Mg)	15	20	2.1	9.5	8.5
Sodium, dissolved (mg/L as Na)	15	25	. 5	4.6	6.8
Potassium, dissolved (mg/l as K)	15	4.2	. 9	2.4	2.4
Iron, dissolved (mg/L as Fe)	17	0.70	.00	0.03	0.12
Aluminum, dissolved (µg/L as Al)	5	1,000	0.00	50	236
Manganese, dissolved (mg/L as Mn)	17	2.4	.04	.62	.71
Sulfate, dissolved (mg/L as SO4)	17	470	40	250	191.2
Chloride, dissolved (mg/L as Cl)	15	4.9	1.2	2.6	2.6
Oxygen, dissolved (mg/L)	13	12.7	7.9	9.5	9.8
Silica, dissolved (mg/L as SiO2)	15	7.5	3.1	4.5	4.6
Nitrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	11	.92	.20	.39	. 4
NORTH FO	ORK AT MOON RIDG	E, MARYLAND (Sit	e 35)		
nH	5	6-8	3.4	3.9	

pH	5	6.8	3.4	3.9	
Specific conductance (µmhos)	5	122	46	83	80
Alkalinity field (mg/L as CaCO ₃)	0				
Acidity (mg/L as CaCO ₃)	3	25	15	15	18.3
Solids, sum of constituents (dissolved)	4	72	39	55	55
Turbidity (Nephelometric Turbidity Units)	0				
Calcium, dissolved (mg/L as Ca)	4	9.4	6.4	7.0	7.4
Magnesium, dissolved (mg/L as Mg)	4	3.1	1.9	2.3	2.4
Sodium, dissolved (mg/L as Na)	4	0.9	0.4	0.5	0.6
Potassium, dissolved (mg/L as K)	4	1.4	. 5	.8	.9
Iron, dissolved (mg/L as Fe)	5	.16	.00	. 53	.66
Aluminum, dissolved (µg/L as Al)	0				
Manganese, dissolved (mg/L as Mn)	5	1.3	.48	.64	.73
Sulfate dissolved (mg/L as SO()	6	280	21	34.5	73.5
Chloride dissolved (mg/L as Cl)	5	2.6	0.7	1	1.3
Oxygen dissolved (mg/L)	3	11	7.0	9.2	9.1
Silica dissolved (mg/L as SiO ₂)	4	5.6	4.1	4.7	4.8
Nitrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	5	.98	.11	.31	. 42

NORTH FORK NEAR WILSON, MARYLAND (Site 36)

		6.0	2.0	5 1	
pH	18	6.9	3.8	5.1	1.00
Specific conductance (µmhos)	17	547	53	139	160
Alkalipity field $(mg/L as CaCO_{2})$	8	8	1	2.6	3.7
Acidity (mg/L as CaCO ₃)	14	60	0	5	12.5
Solide sum of constituents (dissolved)	15	332	37	83	102.3
Turbidity (Nephelometric Turbidity Units)	10	8.6	.8	3.1	3.7
Coloium discolved (mg/I, as Ca)	15	68	5.4	17	19.5
Magnesium, dissolved (mg/L as Mg)	15	15	.8	3.8	4.6
Sodium dissolved (mg/L as Na)	15	1.4	.6	0.9	1.0
Deteration discolved (mg/L as Ka)	15	2.1	.6	. 9	1.0
Trap discolved (mg/L as Fe)	17	12	.11	.34	1.25
Aluminum diagolund (ug/L as Al)	5	750	30	50	200
Manganese, dissolved (mg/L as Mn)	17	1.6	.28	.46	0.53
Culture discolude (mg/L ag SO.)	17	220	20	54	61.5
Chloride dissolved (mg/L as 504)	15	3.7	0.7	1.3	1.4
Chioride, dissolved (mg/L as Ci)	12	12.6	7.9	9.5	9.9
oxygen, dissolved (mg/L)	15	7.9	3.6	4.7	4.8
Nitrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	13	0.97	0.2	.45	.49

Table 7.–	-Summary	of surface	e-water o	quality at	t gaged	and	ungaged	sites	in the	study	area-	Continued.
	[Numbers	following	the stati	ion locat	ion refe	r to l	ocation of	on fig	ure 2]			

	NUMBER OF SAMPLES	MAXIMUM	MINIMUM	MEDIAN	MEAN
SAND RI	JN AT WILSON, MAR	YLAND (Site 42)			
рН	7	7.8	4.2	6.3	
Specific conductance (µmhos)	7	535	140	345	326
Alkalinity field (mg/L as CaCO ₂)	3	6	0	1	2.3
Acidity (mg/L as CaCO3)	4	30	5	10	13.8
Solids, sum of constituents (dissolved)	7	372	74	213	205.7
Turbidity (Nephelometric Turbidity Units)	0				
Calcium, dissolved (mg/L as Ca)	7	89	13	46	44.1
Magnesium, dissolved (mg/l as Mg)	7	12	2.6	7.3	6.8
Sodium, dissolved (mg/L as Na)	7	17	.6	4.5	5.8
Potassium, dissolved (mg/l as K)	7	2.7	.8	1.7	1.6
Iron, dissolved (mg/L as Fe)	7	0.49	.01	0.14	0.21
Aluminum, dissolved (µg/L as Al)	0				
Manganese, dissolved (mg/L as Mn)	7	.59	.32	.46	.46
Sulfate, dissolved (mg/L as SO4)	7	240	45	130	131
Chloride, dissolved (mg/L as Cl)	7	2.8	1.2	1.5	1.7
Oxygen, dissolved (mg/L)	6	11.6	7.3	9.3	9.4
Silica, dissolved (mg/L as SiO2)	7	5.7	3.7	4.6	4.8
Nitrogen, NO ₂ + NO ₃ , dissolved (mg/L as N)	6	. 58	.23	.45	.43

stallation of an anhydrous-ammonia treatment system brought the quality of discharge from this site under satisfactory control.

Samples for laboratory analyses were collected periodically at a number of sites. Field measurements were also made at these sites, and at some additional sites. The results are tabulated in appendix A; table 7 presents ranges and average values for some of the more important parameters. Multiple-parameter monitoring instruments at the three gaging stations provided hourly measurements of temperature and specific conductance. The temperature and specific conductance variations are shown in figure 18, which shows daily mean values. The conductivity values show much variation, but seem to peak in August. The relationship of conductivity and discharge varies from stream to stream (fig. 19). Conductivity appears to be least affected by discharge in the North Fork and most affected in Laurel Run. The apparent outlier in the North Fork data is likely due to acid mine drainage from the abandoned Buffalo Coal Company mine in the Lower Bakerstown seam (site FA 35). This site usually ceased flowing during periods of low flow in the North Fork. However, on the day of this particular measurement (Jan. 15, 1982), discharge from the abandoned mine may have constituted a more significant portion of the North Fork discharge perhaps because of subfreezing temperatures at that time. The abandoned mine drainage into Laurel Run also seems to

affect the receiving stream, having greater effects during low flows (these drainage points do not cease flowing during dry periods) as suggested by what seems to be a break in slope in the Laurel Run data (fig. 19). Specific conductance seems to have a weaker relationship to discharge in the South Fork. This may be due to the effects of additions of treated AMD and modifications of streamflow, which cannot be accounted for quantitatively.

Laurel Run has the lowest pH values and the narrowest range despite large variations in discharge (fig. 20); it also has the highest values of acidity. The pH of Laurel Run is kept low by the addition of AMD from the abandoned Kempton Mine (GA 3 and GA 6). The South Fork pH measurements cover an approximately equal, although higher range. That range is extended by a single low measurement (4.2 on Sept. 17, 1981). This was the result of the release of mine drainage from the AMD treatment plant located upstream of the sampling site, which was out of operation that day; otherwise, the input of treated water maintained the pH above six units, regardless of discharge. The North Fork has the broadest range in pH, which may be influenced by discharges from the abandoned Buffalo Coal Mine (FA 35) at a point located on the west side of Table Rock Road at the powerline crossing. Water discharging from the abandoned mine is of low pH and high acidity; however, it ceases to flow during extended dry periods.

Discharge, in cubic feet per second

Figure 19.—Relationships of specific conductance and discharge in North Fork, South Fork, and Laurel Run.

During such periods, a greater portion of the streamflow may be derived from less mineralized water from shallow ground-water flow systems, thereby accounting for the higher pH values.

The quality of water discharged to Maryland streams is regulated by the Maryland Department of Health and Mental Hygiene. Permit requirements vary, depending on site-specific conditions, but the pH of the receiving stream, in any case, must be between 6.5 and 8.5 (Maryland Department of Health and Mental Hygiene, Code of Maryland Regulations 10.50.01). The pH in the South Fork was maintained above 6 (except for a period when the AMD treatment plant was not operating). About 70 percent of the pH measurements in the North Fork were less than 6, and all of the measurements in Laurel Run were well below 6.

Dissolved sulfate is another indicator of acid mine drainage. The relationships between discharges and dissolved sulfate concentrations measured at the three gaging stations (fig. 21) are similar to the dischargespecific conductance relationships (fig. 19). Large quantities of sulfates in the North Fork and Laurel Run are due mainly to water draining from abandoned underground mines. The high sulfate concentrations in the South Fork probably are the result of leaching of precipitation through coal piles and coal waste along coal-transfer facilities leading to the coal-treatment plant, and from AMD. The discharge-dissolved sulfate relationship in the South Fork is not well defined probably because of the combined effects of discharge of treated water and withdrawal from the makeup water pond.

Less AMD will probably be discharged into streams without treatment by present operations than by past operations. Spoil from active subsurface mines is being distributed in abandoned strip mines, graded, and revegetated. Thus, water quality may improve, particularly with regard to suspended material, and sediment production may decrease as these areas are restored.

Discharge, in cubic feet per second

Figure 21.—Relationship of dissolved sulfate and discharge in North Fork, South Fork, and Laurel Run.

Observation-Well Network

Three clusters of wells were drilled in the study area to provide geologic and hydrologic data. Four wells were drilled at sites 1 and 2 and five wells were drilled at site 3. The sites were chosen to provide data across the syncline (within constraints imposed by property ownership and projected early mining). The three clusters of wells, the stream-gaging stations, and the precipitation gage (fig. 2) are located within the boundaries of the A Mine.

Each well in a cluster is open to a different zone (fig. 22). At each cluster, zone 1 is open just below the Upper Freeport coal; zone 2 is open above the Upper Freeport coal; zone 3 is open between the Brush Creek and Lower Bakerstown coal horizons, and zone 4 is open above the Harlem coal. Zone 5 at site 3 is open near land surface (from 22 to 85 ft). With the exception of the shallow zone at site 3, these zones are fairly extensive sandstone units. Four-inch-diameter casing (fig. 23) allows room for water-level recording equipment and for a testing and sampling pump. Several wells drilled for Mettiki, domestic wells, underground mine-discharge sites, and springs are included in the ground-water observation network (table 8).

Figure 23.—Typical observation-well construction.

The 13 wells of the three clusters were drilled using air-rotary and, for some of the wells, diamond-bit coring drills. Descriptions of the cuttings and cores are included in appendix B. The cores, which were of the deeper segments of the wells, were mostly broken and, in places, crumbly. Much of this, especially involving shaly material, may have resulted from coring rather than the presence of natural fractures, because ironstaining or weathering was not evident on any of the broken core surfaces.

Geophysical logs were obtained for most of these wells and some of Mettiki's wells (table 9 and appendix B). The geophysical logs provide some information regarding the properties and extent of the ground-water system.

Water Levels

Water-level measurements began on Mettiki's observation wells in June 1978, and continuous recorders were installed on the 13 test wells between May and July 1980. Water levels in each well rose higher than the top of the open-hole zone. Well FA 36 flowed initially, but ceased by May 1981. Well FA 31 began to flow at about 780 ft below land surface and, at 1,131 ft below land surface, water rose inside the drill stem to about 8 ft above land surface. Water was simultaneous-ly overflowing the top of the casing, indicating that the actual head was greater than 8 ft above land surface. The well was subsequently plugged back to 606 ft below land surface and stopped flowing.

Most of the springs (table 8) inventoried within the study area seem to be perched at the level of the Barton coal. One spring, FA 10, may be perched at the level of the Lower Bakerstown coal.

Ground water is discharged to the surface at three additional sites. Site FA 35 drains the abandoned Buffalo Coal Company Mine No. 1 (Lower Bakerstown coal); sites GA 3 and GA 6 drain the abandoned Kempton Mine (Upper Freeport coal).

At sites 1 and 2, the water level of the shallow zone is near or below the level of the nearby South Fork. If this water-bearing zone is the unconfined aquifer, it indicates that the South Fork is perched along a part of its length, and infiltration may occur along some reaches.

Water levels varied in each well at each site (fig. 24). Furthermore, the positions of the water levels of each zone relative to each other varied from site to site. The period of record (June 1980 to September 1981) is insufficient to characterize long-term conditions, but some important features can be noted.

Figure 22.—Open-hole zones of wells and identification of coals.

17-11		Altitude	Depth		Casing									Use
NO.	Owner	of land	of well	Depth	diam-	Aquifer	Water	level	Draw-	Pato	Discharge	Voura	Specific	of
		(ft)	(ft)	(ft)	(in)	Additer	(ft)	measured	(ft)	(gal/min)	measured	pumped	[(gal/min)/ft]	Well
FA 20	Cooper Charles	2 750	70	22	E	Conemaugh	20	6/17/72	10	0.0	C (17 (72	2.0	0.7	
FA 20	cooper, charles	2,750	78	22	S	Conemaugh	28	6/1///3	12	8.0	6/1///3	2.0	0.7	Н
FA 24	Mettiki Coal Co.	2,610	229	30	8	do.	170	11/23/77	59	30	11/23/77	.5	.5	N
FA 25	do.	2,673	315	304	6	do.	301	6/23/78						0
FA 26	do.	2,673	170	150	6	do.	16	6/23/78						0
FA 27	do.	2,860	215	190	6	do.	169	6/23/78						0
FA 28	do.	2,890	341	317	6	do.	105.50	6/23/78						0
FA 29	do.	2,890	226	203	6	do.	130.75	6/23/78						0
FA 30	do.	2,730	447	417	6	do.	440	5/20/78	7	50	5/20/78		7.1	N
FA 31	U.S. Geological Survey	2,618	606	470	4	Allegheny	11.54	10/09/80	107	2.0	3/11/81	.2	.02	0
FA 32	do.	2,618	473	430	4	Conemaugh	18.69	10/09/80	108	3.6	3/12/81	. 4		0
FA 33	do.	2,618	391	318	4	do.	17.94	10/09/80	93	2.0	5/06/81	1.5		0
FA 34	do.	2,618	115	96	4	do.	16.15	10/09/80	2	6.0	5/07/81	2.0	3.6	0
FA 36	Mettiki Coal Co.	2,650	210	46	8	do.	-2	6/20/78		200	6/20/78	.5		0
FA 37	do.	2,780	253	40	8	do.	50	1/17/79	203	100	1/17/79	.5	.5	N
FA 38	Glofelty, Curtis	2,680	118	39	6	do.	31	10/10/79	87	7.0	10/10/79	1.0	.1	Н
FB 22	U.S. Geological Survey	2,530	640	517	4	Allegheny	78.18	10/09/80	65	3.0	4/21/81	.3	.05	0
FB 23	do.	2,530	495	460	4	Conemaugh	19.70	10/09/80	54	2.0	4/22/81	.5	.04	0
FB 24	do.	2,530	400	340	4	do.	20.05	10/09/80	117	4.0	4/23/81	.4	.03	0
FB 25	do.	2,530	180	120	4	do.	29.07	10/09/80	5	7.5	4/24/81	1.5	1.4	0
FB 26	do.	2,755	832	687	4	Allegheny	269.33	10/09/80						0
FB 27	do.	2,755	656	590	4	Conemaugh	4.60	10/09/80	167	4.0	5/04/81	.6	.02	0
FB 28	do.	2,755	556	517	4	do.	216.09	10/09/80						0
FB 29	do.	2,755	360	316	4	do.	252.69	10/09/80						0
FB 30	do.	2,755	85	82	4	do.	32.47	10/09/80	8	6.3	5/05/81	2.3	.8	0

Table 8.—Records of wells, underground mine-discharge sites, and springs in the study area, southwest Garrett County, Maryland.

 1 H, domestic; N, industrial; O, observation.

UNDERGROUND MINE-DISCHARGE SITES

Cite.	Altitude	Disc	Cool coom			
No.	surface (ft)	Rate (gal/min)	Date measured	drained		
FA 35	2,630	58	6/30/81	Lower Bakerstown.		
GA 3	2,640	690	10/29/81	Upper Freeport.		
GA 6	2,650	1,659	8/25/70	Do.		

c;	to		Disch	arge	Altitude	Aquifer	Improvements	lise of
No.		Owner	Rate (gal/min)	Date measured	surface (ft)	ngurrer	Improvementes	water
GA	1	Town of Kempton	750	7/00/50	2,860	Conemaugh	Spring house	Public supply.
GA	2	Lipsco, Berlinda			2,690	do.	Tile and rock basin	
GA	4	Radeheaver, Paul	40	10/29/81	2,660	do.	Concrete basin	Domestic.
GA	5		5	10/29/81	2,660	do.	Pipe	Unused.

SPRINGS

Well No.	SP ¹ -Multi- point electric	Caliper	Gamma	Neutron	Gamma- gamma	Temper- ature	Brine tracer	Fluid resistivity	Single point resistance	Acoustic	Focused electric
FA 25	-	х	х	-	-	-	-	-	x	-	-
FA 26	-	х	х	-	-	_	-	-	Х	-	-
FA 27	-	х	х	-	-	-	-	-	Х	-	-
FA 28	-	х	x	-	-	-	-	-	х	-	-
FA 29	-	х	х	-	-	-	-	-	х	-	-
FA 31	x	х	х	х	х	х	х	х	Х	-	-
FA 32	X	х	х	-	-	-	-	-	-	-	-
FA 33	Х	х	х	-	-	-	-	-	-	-	-
FA 34	Х	х	х	-	-	-	-	-	-	-	-
FB 22	х	х	х	-	-	-	-	-	х	-	-
FB 23	х	Х	-	-	-	-	-	-	х	-	-
FB 24	х	х	-	-	-	-	-	-	х	-	-
FB 25	х	х	-	-	-	-	-	-	х	-	-
FB 26	х	х	х	х	х	х	х	х	-	х	Х

Table 9.-Geophysical logs of selected wells in the study area.

¹ Spontaneous potential.

A significant event occurred at site 1 beginning at the end of March 1981, when water levels in all four wells dropped substantially. In January, a side heading in the Upper Freeport coal was begun by Mettiki in a northeasterly direction from the main heading. The purpose of the cut was to allow realinement of the main heading. By July 1, this side heading (fig. 25) was within about 300 ft of the well cluster, and progress was suspended. The water levels ceased to drop steeply at the end of June, and two wells (open to zones 1 and 3) even showed rises. Much of the record for this period was lost for zones 2 and 3, but measured values showed that the water level in well FA 32 (zone 2) had dropped to 392 ft below land surface (Aug. 12), and the water level in well FA 33 reached 185 ft below land surface (July 22). The zone most affected was the one above the Upper Freeport coal. The zone below the coal was affected to a much lesser extent, attesting to the efficacy of the underclay as a confining bed. Excluding this zone, the declines are inversely proportional to the logarithm of the distance of the zone above the coal (fig. 26), essentially a distance-drawdown relation.

Neither of the other two clusters has shown such effects; however, at site 3 some significant declines occurred as a result of a different factor. Wells FB 28 and FB 30 dropped significantly in May 1981. At this

site, well FB 27 was pumped at 4 gal/min on May 4, and well FB 30 was pumped at 4 and 8 gal/min on May 5. The other three wells at this site were not pumped because of their deep static levels. Well FB 27 recovered slowly to its original level. Well FB 30 was drawn down less than 8 ft and recovered relatively quickly (1.8 ft of residual drawdown after 10 minutes). During the pumping tests, water levels in the other wells were not observed to change. Within a few days, a test hole was cored for MAPCO, Inc., within 300 ft of the cluster, to a depth just below the Lower Bakerstown coal. This hole penetrated zones 4 and 5, and a portion of zone 3. It is possible that the observed change in water levels (after recovery from pumping) is due to flow of water through the test hole from zones 3 and 5 into zone 4 (and perhaps another zone not measured), bypassing several confining layers.

Another feature of the hydrographs is the continuous water-level decline in zone 1 (wells FA 31, FB 22, and FB 26). At sites 2 and 3, the slopes of the water levels are nearly the same. No pumping is known to occur from this zone in the area. The decline may be due to diversion of recharge to the zone, perhaps by dewatering of a coal mine in West Virginia, or to reductions in pressure due to Mettiki dewatering.

Figure 24.-Observation wells at sites 1, 2, and 3.

Figure 25.—Mining progress in the vicinity of site 1.

Difference in altitude between bottom of well and top of coal, in feet

Figure 26.—Relationship of the amount of water-level decline since March 1981 to the difference in altitude between the well bottom and the Upper Freeport coal of the Allegheny Group.

Aquifer Properties

Well FA 31, at site 1, was drilled to 1,131 ft below land surface in order to locate the base of fresh ground water. The fluid resistivity log shows a sharp decrease in resistivity (from about 33 ohm-meters) at a depth of 924 ft. At about 1,020-ft depth, the resistivity stabilized at about 3 ohm-meters. This well began to flow when its depth reached about 780 ft below land surface and continued to flow until the lower portion was grouted. A brine tracer log for the interval 860 to 900 ft indicates an upward flow of about 2 ft/min (approximately 1 gal/ min). Brackish water in the borehole was apparently shifted upward with respect to the undisturbed occurrence within the rocks by this vertical flow. The spontaneous potential (SP) log indicates that the brackish water within the formation occurred at depths below about 1,020 ft and became diluted with fresher water up to about 940 ft. The SP and multipoint resistivity logs also indicated freshwater coming into the borehole at about 770 ft and 670 to 690 ft. Brackish water was not found in any other wells.

Water-bearing zones in the study area are not arranged in simple, continuous layers. To appreciate the aquifer geometry, one must consider the environments of deposition as discussed in the section on Geology. Features such as sand-rich or clay-rich zones are indicated on the gamma logs; however, these logs do not reveal that the sandstone bodies are very well consolidated with a siliceous cement. The low bulk porosity of the rocks in the study area is evident from examination of cores and neutron logs; the latter indicate that the sandstone bodies have bulk porosities of less than 6 percent. Caliper and acoustical logs indicate some significant fractures which increase permeability. Despite their well-cemented nature, the sandstones may be better aquifers than the shales owing to greater fracture density, a consequence of the less brittle nature of the shales. There is some degree of hydraulic connection in all three dimensions. However, the underclays may be effective confining beds where present, particularly those that underlie the Upper Freeport and Lower Bakerstown coals. Some of the shales and mudstones may also restrict vertical movement of water. The openhole zones, then, may not fully penetrate discrete aquifers.

An estimate of porosity can be made from the resistivity logs where formation water is brackish, using the relationship of the formation factor (reșistivity measured by the 64-in. normal logging tool, divided by resistivity of the formation water) and porosity (Lynch, 1962, p. 201):

$$\phi = 2.15 \sqrt{0.62/F}$$

where

 ϕ = porosity, and

F = formation factor.

For a depth of 1,040 ft in FA 31,

$$\phi = 2.15 \sqrt{0.62/412} = 0.049 = 5$$
 percent.

This equation was developed for estimating primary porosity of shale-free sandstone rather than fracture porosity; however, it does seem to give results which are in reasonable agreement with the neutron log.

Aquifer tests were performed on all wells at sites 1 and 2, and on wells FB 27 and FB 30 at site 3. The static levels in the other wells at site 3 were too deep to allow testing to be done with available equipment. Pumping was done with a low capacity submersible pump that could fit inside the 4-in. casing and was able to pump from depths exceeding 200 ft.

Examples of drawdown and recovery data for the test wells are presented on logarithmic plots in figure 27. Drawdown was only observed in the pumping well because the pumping rate was too low to affect the other wells. Drawdown for well FB 25, which is open from 120 to 180 ft, is shown in figure 27a. The pumping rate, 7.5 gal/min, did not stress the aquifer very much and the water level began to stabilize very quickly. The deviation from the Theis type curve is probably due to delayed yield from storage, under unconfined conditions. Figure 27b shows the time-drawdown data for well FA 33, which is open from 318 to 391 ft. This was a much lower-yielding well, and the linear nature of the graph indicates that most of the water was coming from borehole storage. Figure 27c shows recovery in well FA 31, which is open from 489 to 606 ft, and also was a low yielding well. Deviations from the Theis type curve may also be caused by the fractured, heterogeneous nature of the aquifer and variations in the pumping rate.

Approximation of hydraulic conductivity (K) or transmissivity (T) using various analytical methods (Bouwer and Rice slug test, 1976; Ogden's onedrawdown estimate of T, 1965; semilogarithmic plotting) suggest that transmissivities of the deeper zones are less than about 25 ft^2/d , and, of the shallower zones, a few hundred feet per day (table 10).

The method of Bouwer and Rice is demonstrated below. (Use of slug-test calculations seemed justified because of the low pumping rate, short duration of pumping, and tightness of the formation). Hydraulic conductivity, K, is calculated as:

$$K = \frac{r_c^2 \ln (R_e/r_w)}{2L} - \frac{l}{t} \frac{y_o}{y_t}$$

where

 $r_c =$ inside radius of casing;

 R_e = effective radius over which y is dissipated;

- $r_w = radius of open hole;$
- L =length of open hole;
- t = time required for water-level rise;
- $y_o = distance$ between water level and static level at t = 0; and
- $y_t = distance$ between water level and static level at time t.

 R_{e} is evaluated by the expression:

$$\ln \frac{R_e}{r_w} = \left[\frac{1.1}{\ln (H/r_w)} + \frac{A + B \ln [(D-H)/r_w]}{L/r_w} \right]^{-1}$$

where

- H = distance from top of aquifer to bottom of well;
- D = thickness of the aquifer; and
- A,B = dimensionless coefficients (from graph in Bouwer and Rice, 1976, p. 426).

For a fully penetrating well (H = D), a modified form of the equation is used:

$$\ln \frac{R_e}{r_w} = \left(\frac{1.1}{\ln (H/r_w)} + \frac{C}{L/r_w}\right)^{-1}$$

where

C = another dimensionless coefficient, obtained from the same graph.

Figure 27.-Examples of drawdown and recovery data for selected wells.

Table 10.-Characteristics of the hydrologic units tested.

				Assumed		Transmissivity (feet squared per day)				
Site No.	Well No.	Zone	Assumed thickness (ft)	storage coefficient	Hydraulic conductivity ² (ft/d)	Hydraulic conductivity X thickness	Time- drawdown ³	Single drawdown ⁴		
1	FA 31	1	76	0.0008	0.3	22	2	25		
	FA 32	2	43	.00004	.5	23	.7	2		
	FA 33	3	66	.00007	.2	11	3	3		
	FA 34	4	64	.00006	9	550	570	1,100		
2	FB 22	1	120	.0001	.05	6	3	6		
	FB 23	2	48	.00005	.3	15	8	10		
	FB 24	3	83	.00008	.2	13	11	12		
	FB 25	4	61	.00006	7	427	241	320		
3	FB 27	2	61	.00006	.05	3	9	6		
	FB 30	5	78	.00008	7	530	280	380		

¹ S, is assumed thickness $X 10^{-6}$ (Lohman, 1979, p. 8).

² Bouwer and Rice (1976) slug test.

3 Cooper and Jacob (1946).

4 Ogden (1965).

Data from well FB 25, pumped for a short period on April 24, 1981, yield:

$$\ln \frac{R_e}{r_w} = \left(\frac{1.1}{\ln (61 \text{ ft}/0.125 \text{ ft})} + \frac{10.5}{60 \text{ ft}/0.125 \text{ ft}}\right)^1$$
$$= 5.0107$$

K =
$$\frac{(0.17 \text{ ft})^2 (5.0107)}{2 (60 \text{ ft})} \left(\frac{1}{0.44 \text{ min}}\right) \ln \frac{3.81 \text{ ft}}{0.71 \text{ ft}}$$

= 4.6×10^{-3} ft/min or 6.635 ft/d, rounded to 7 ft/d.

Transmissivity (T) is obtained by multiplying K by the assumed thickness of the aquifer:

$$T = (7 \text{ ft/d}) (61 \text{ ft}) = 427 \text{ ft}^2/\text{d}.$$

Aquifer thicknesses, especially for the deeper wells, are not known with certainty and are one source of disagreement for transmissivities calculated by various methods. Thicknesses used for the above analyses were estimated from lithology, but the aquifer boundaries were difficult to distinguish.

Hydraulic conductivities calculated by this method (fig. 28) vary with the depth of the open-hole zone (plotted as the midpoint of the zone). The equation for the line, obtained by a least-squares regression, is:

 $\log K = 1.144 - 0.004d$

or

 $K = 28e^{-0.009d}$

where

K = hydraulic conductivity; and

d = midpoint of the open-hole zone.

Such a relationship is expected because of the general tendency for fractures to decrease in abundance and openness as depth increases. A relationship of the same form was noted by Stoner (1983, p. 130) in a geologically similar area and by other workers in fracture-controlled permeability terrains. A consequence of this relationship is that most of the ground-water circulation occurs within a few hundred feet of land surface.

 $\Gamma = \frac{1.87r^2S}{mt}$

Using the data from FB 25:

$$S = (61) (10^{-6}) = 0.00006$$

$$uW(u) = \frac{(1.87 \text{ gal/ft}^3) (0.125 \text{ ft})^2}{(114.6 \text{ min/d}) (7.5 \text{ gal/min})}$$

$$= 1.1 \times 10^{-7}$$

From Ogden's graph:

$$u = 8 \times 10^{-9}$$

and solving for T:

$$T = \frac{(1.87 \text{ gal/ft}^3) (0.125 \text{ ft})^2 (0.00006)}{(8) (10^{-9}) (132.42 \text{ min} \cdot 1 \text{d}/1,440 \text{ min})}$$
$$= 2,383 \text{ (gal/d)/ft, or 319 ft}^2/\text{d},$$

which is in fair agreement with the T calculated by the method of Bouwer and Rice (1976).

Because aquifer tests involving small pumpage: stress only a small portion of the aquifer, it may be desirable to estimate areal transmissivities.

If streamflow is measured, areal transmissivity can be estimated without measuring ground-water levels in a well because the base-flow and water-level recession slopes are equal (Rorabaugh, 1963, p. 434). The basic equation (Rorabaugh, 1960, eq. 5) is:

$$T/S = \frac{0.933 a^2 \log (h_1/h_2)}{(t_2 - t_1)}$$

where

- T/S = the aquifer diffusivity (transmissivity divided by storage coefficient);
 - a = distance from the stream to the divide (which may be computed as one-half times the basin area divided by total stream length);
- h_1, h_2 = ground-water levels at early and late times during recession, denoted t_1 and t_2 .

Figure 28.-Variation of hydraulic conductivity with depth.

A sample calculation for the method of Ogden (1965) is shown below:

$$uW(u) = \frac{1.87r^2 Ss}{114.6 Qt}$$

where

$$u = \frac{1.87r^2S}{Tt}$$

(based on the Theis nonequilibrium method);

W(u) = the well function of Theis;

r = radius of the pumped well;

S = storage coefficient;

s = drawdown;

Q = discharge; and

t = time since pumping began.

Because S was not determined by the pumping test, it was estimated as:

S = aquifer thickness x
$$10^{-6}$$
 (Lohman, 1979, p. 53).

The value u is obtained graphically (Ogden, 1965, p. 52) from uW(u) and used to calculate transmissivity (T):

If a water-level decline of one log cycle is chosen, the factor log (h_1/h_2) is equal to 1. Because the quantity of base flow is a function of the ground-water levels, the base-flow decline over one log cycle may be used, and only the duration, $t_1 - t_2$, need be measured. The equation thus simplifies to:

$$\frac{T}{S} = \frac{0.933 a^2}{(t_2 - t_1)}$$

and transmissivity can be calculated if storage (S) is estimated (table 11).

Paired values of S are shown: Pumping tests at the three well clusters suggest the lower values may be close, but other workers have used higher values. Trainer and Watkins (1975, p. 39) obtained a value of T/S of 29,000 ft²/d for fractured rocks having thin regolith in the Upper Potomac River basin, and used S = 0.005 to derive $T = 140 \text{ ft}^2/\text{d}$ as an average value for that setting. The calculated diffusivity of the Laurel Run basin $(30,000 \text{ ft}^2/\text{d})$ is close to the average value obtained by Trainer and Watkins. The higher values of the other two may be due to shortened recession times as a consequence of undermining (Buffalo Coal Co. Mine No. 1). The lower assumed S values are more appropriate for the deeper zones; those zones are of much less significance in terms of ground-water circulation than the uppermost 100 ft. Interpretation of areal values is made difficult by the combination of natural heterogeneity and alterations to the natural system.

Ground-Water Flow System

The ground-water flow system had already been modified by earlier coal mining when this study began. Strip mining probably affected local infiltration and recharge rates. Underground mines, which act as large sinks, have altered ground-water flow directions and provided conduits for discharge to the surface at various locations.

Hollyday and McKenzie (1973, p. 13-14) state that the natural flow system in the Allegheny Plateau in Maryland is similar to that in western Pennsylvania as described by Carswell and Bennett (1963), and Poth (1963). This study is in basic agreement with these findings. The shallow part of the system that underlies the hills discharges to the local streams and, to some extent, leaks downward to the deeper portions of the flow system, which discharges into higher order streams which are at lower elevations. The shallow system may also be perched locally above strata of low permeability, such as clays or shales that are less fractured than the sandstones. These barriers cause the water to flow laterally until it can discharge at springs or seeps above the smaller valleys. Very shallow ephemeral systems may be important contributors to streamflow following periods of precipitation (the interflow component). These systems are local in extent and may discharge along the hillsides above stream level. They may be perched on impervious soil zones such as fragipans, or they may be concentrated by piping near the lower areas of the hillslopes.

Water-table conditions probably are represented by the water levels in the shallow wells installed at each cluster. Most of the water that recharges this system is from precipitation within the area, and locally from leakage of nearby streams. At site 1, near the middle of the South Fork, the water table is generally several feet above the level of the stream. At site 2, near the lower reach of the South Fork, the water table is generally near or several feet below the level of the stream. At site 3, on a hilltop, the water table is about 30 ft deep. The water level in zone 4 (the next shallowest well at site 3) is considerably lower than the level of the water table. This suggests perching of the water-table aquifer, with

Basin	Aquifer	Assumed	Estimated
	diffusivity	storage	transmissivity
	(ft²/d)	coefficient	(ft²/d)
South Fork	63,000	0.0001	6.3
Sand Run		.005	315
North Fork	145,000	.0001	15
Sand Run		.005	725
Laurel Run	30,000	.0001 .005	3 150

Table 11.—Aquifer diffusivity and estimated transmissivity and storage of the North Fork, South Fork, and Laurel Run basins

some leakage downward. The dissected terrain results in a number of independent shallow subsystems.

The deeper ground-water flow system, which does not interact with the streams within the study area, is also a discontinuous system. Beds of much lower permeability, particularly the underclays of the Lower Bakerstown and Upper Freeport coals, separate some of the flow paths. These confining beds are not continuous and some leakage probably occurs across them.

Flow in the deepest freshwater zone probably originates outside of the study area and discharges to major stream valleys in the region. This deeper system may receive additional recharge through leakage from above. The base of the freshwater system is the interface with saline water (observed in well FA 31 at a depth of 940 ft), which has been mapped in West Virginia (Foster, 1980), adjacent to the study area. Figure 29 shows a possible interpretation of the deep freshwater flow system; the base is derived from the maps of Foster. This system may discharge to the North Branch Potomac River through upward leakage. Underground coal mines are additional sinks for this part of the flow system.

Figure 30 shows possible flow paths prior to April 1981 in the same section shown in figure 22. In the vicinity of site 1, there is a downward-flow component (above the level of the Upper Freeport coal), but at sites 2 and 3 there is an upward-flow component (except for downward leakage through the streambed of the South Fork near site 2 and from the perched water table at site 3). Bearing in mind that the section is not along a straight line, it appears that there are both downdipand down-plunge-flow components.

Figure 31 is a section that is constructed along a straight line from the crest of Backbone Mountain, through site 1, to the North Branch Potomac River. From this figure, it might seem that the vertical-flow components of sites 2 and 3 could be generated by recharge on the mountain; however, the greater relief of the regional system (fig. 29) suggests that recharge in the Backbone Mountain area to the deeper zones may only cause mounding of the potentiometric surface within a regional slope.

Pumpage of water from the Mettiki mines has affected shallow and deep ground water as shown by water levels at site 1 (figs. 24 and 25). These effects are limited to within several hundred feet of the mine workings. The water table has been lowered in some areas to several tens of feet below stream level. This may result in a reversal of ground-water flow and a decrease in streamflow unless compensated for (for example, by discharge of treated mine and process water).

The removal of coal pillars from worked-out mines will create extensive fracturing as the voids collapse. When this does occur, permanent modifications to the ground-water flow system will result, and a new equilibrium will eventually become established after mine dewatering ceases.

Ground-Water Quality

Samples of water from seven of the cluster wells were collected for laboratory water-quality analyses as the wells were pumped. Temperature, pH, and specific conductance of the samples were measured at the time of collection. Additional samples were collected from two underground-mine discharge sites, three springs, and one seepage point within the A Mine. The deeper wells vielded insufficient quantities of water to ensure that the samples represented formation water; pH values of some of these samples (as high as 11.6) are above the usual pH limits of normal environments (Krauskopf, 1967, p. 247) and suggest that the water sampled may have been contaminated by reaction with the cement grout at the bottom of the casing. All analyses are shown in table 12, with the caution that samples from some of the low-yielding wells may not be representative of formation water. Analyses reported by Mettiki (table 13) also included high pH values from low-yielding wells and may represent water that has reacted with grout. The pH of water from well FB 23, which is just above the Upper Freeport coal, is 7.0, and the pH of the sample collected inside the A mine is 7.6. This suggests that water from the deeper zones should not have very high pH values.

The potassium concentrations of several of the wells are nearly as high or higher than the sodium concentrations; this may be due to cation exchange in clayrich zones and (or) weathering of potash-feldspar, muscovite, or illite minerals in the rocks.

Well FB 31 was sampled at depths of 870, 965, and 1,100 ft (table 12) by use of a down-hole sampler. The high sodium and chloride concentrations (1,800 mg/L and 2,900 mg/L) from 1,100 ft verify that the base of the freshwater zone was penetrated. The data suggest that two separate ground-water zones were sampled (salty water at 1,100 ft, and freshwater at 965 ft). A third zone of mixed water produced by upward flow in the borehole was sampled at 870 ft.

Field analyses of three springs show lower pH and specific conductance values than most of the wells (table 12). This may simply reflect shorter flow paths and briefer residence times of water in the ground, or perhaps the deeper water has passed through more reactive zones, particularly marine shales.

Table 12 also includes data from coal-mine drainage. One of the sites from the Kempton Mine (GA 3) was sampled during this study. The other, site GA 6, was sampled by Hollyday and McKenzie (1973). The analyses of the mine drainage water indicate that they are significant sources of acid water and contain large amounts of iron, sulfate, and other dissolved ions.

Contour interval 500 feet

Base map is from U.S. Geological Survey Cumberland quadrangle, 1:250,000, 1954

Study area

Generalized flow direction

Figure 29.-Regional flow directions.

Figure 30.—Possible ground-water flow paths prior to April 1981. (Section is the same as shown in figure 22).

Table 12.-Chemical analyses of ground water.

Site No.	Type of site	Geologic unit	Date of Sample	Depth to top of sample interval (ft)	Depth to bottom of sample interval (ft)	Specific conductance field (µmhos)	Specific conductance laboratory (µmhos)	Field	Laboratory	Temperature, water $(\circ G)$	Hardness, (mg/L as CaCO ₃)	Hardness, noncarbonate (mg/L as CaCO ₃)	Acidity, total heated (mg/L as H)	Acidity (mg/L as CaCO ₃)	Calcium, dissolved (mg/L as Ca)	Magnesium, dissolved (mg/L as Mg)	Sodium, dissolved (mg/L as Na)	Potassium, dissolved (mg/L as K)
FA 20	W	Conemaugh	78-08-03	22	78	25		6.8			12	3			3.3	0.8	0.3	0.5
FA 31	W	Fottsville	80-02-11	488	<u>2</u> /1,131		9,470		8.0		300	99			90	18	1,800	4.7
do.	W	do.	80-02-11	488	3/1,131		292		7.6		23	0			6.9	1.4	26	.5
do.	W	Allegheny	80-02-11	488	4/1,131	380			7.9		34	10			11	1.6	95	•7
do.	W	do.1/	81-03-10	470	606	420	286	10.4	11.0	9.8	64	С			24	1.0	10	7.9
FA 32	W	do.1/	81-03-12	430	473	2,600	2,910	11.6	11.8	10.0	710				280	1.7	13	41
FA 34	W	Conemaugh	81-05-07	96	115	141	161	7.0	7.6	14.8	82	8			24	5.4	.7	1.1
FA 35	D	do.	81-05-15			3,280	3,210	4.9	3.0	11.3	1,700	1,700			470	120	5.5	12
do.	D	do.	81-06-30				3,110		4.0		1,600	1,600	9.0	447	440	110	6.5	13
FB 22	W	do.1/	81-04-21	517	640	4 °0	363	10.6	10.8	11.6	33	0			13	.2	20	43
FB 23	W	Conemaugh	81-04-22	460	495	195	216	7.0	7.8	12.0	110	19			34	5.7	1.1	1.0
FB 25	W	do.	91-04-24	120	180	438	443	7.3	8.2	9.4	210	87			60	14	11	3.7
FB 30	W	do.	81-05-05	82	85	193	202	6.4	7.2	12.3	110	7			31	6.7	• 4	1.6
GA 1	S	do.	81-10-29			86		6.9		11.0								
GA 3	D	Allegheny	81-10-29			803	897	3.2	3.0	10.5	190		4.8		47	18	4.5	2.8
GA 4	S	Conemaugh	81-10-29			21		5.1		9.1								
GA 5	S	do.	81-10-29			26		6.3		10.0								
GA 65/	D	Allegheny	70-08-25			1,020	1,690	3.4	2.6	10.3		599			80	32	5.6	3.5
Mine drip	A	do.	81-12-18			350	332		7.6	8.0	160	62			48	9.6	2.7	2.2

1/Probably affected by grout and not representative of formation water. 3/Sampler at depth of 1,100 feet. 4/Sampler at depth of 965 feet. 5/Sampler at depth of 870 feet. Hollyday and McKenzie (1973).

(W, well; D, abandoned-mine discharge; S, spring; A, active-mine wall)

Table 12.-Chemical analyses of ground water-Continued.

Alkalinity (mg/L as CaCO ₃)	Sulfate, dissolved (mg/L as SO4)	Chloride, dissolved (mg/L as cl)	Fluoride, dissolved (mg/L as F)	Nitrogen, NO ₂ + NO ₅ total (mg/L as N)	Nitrogen, NO ₂ + NO ₃ dissolved (mg/L as N)	Phosphorus, total $(m_{\mathcal{B}}/L \text{ as } P)$	Phosphorus, dissolved (mg/L as P)	Silica, dissolved (mg/L as SiO ₂)	Iron, suspended recoverable (µg/L as Fe)	lron, total (μg/L as Fe)	Iron, dissolved (μg/L as Fe)	Manganese, suspended recoverable (µg/L as Mn)	Manganese, total (µg/L as Mn)	Manganese, dissolved (µg/L as Mn)	Solids, residue at 180 deg. C, dissolved (mg/L)	Solids, sum of constituents, dissolved (mg/L)	Solids, volatile, dissolved (mg/L)	Site No.
8	1.5	0.1	0.0			0.00		4.6		80			10		25	17		FA 20
200	0.6	2,900		0.03		.050		10	2,000	4,200	2,200	20	130	110		4,950		FA 31
21	.1	42						4.5	310	330		10	20	10		131		do.
24	.1	150						7.5	320	450	130	0	10	20		280		do.
79	8.4	2.1	.3		0.11		<0.010	8.4			780			5	106	111		do.
740	29	1.6	<.1		.01		.010	9.5			170			10	1,360	821		FA 32
74	4.0	•5	.1		<.01		.040	7.5	0	1,400	1,400	0	90	100	102	89		FA 34
0	2,100	2.5	.1		•04		.020	31	60,000	290,000	230,000		5,700	6,000	3,360	2,980		FA 35
0	2,100	2.4	.2		.03			22			130,000			5,800	3,430	2,840	507	do.
98	12	1.3	.2		<.01		.020	10			2,300			30	163	161		FB 22
89	14	1.0	.2		.01		.020	6.3			40			120	120	117		FB 23
120	99	.6	.2		<.01		<.010	7.8			290			60	275	269		FB 25
98	7.2	1.1	.2		.02		.040	7.8	0	3,600	3,800	0	260	290	121	119		FB 30
																		GA 1
	44O	2.6	. 4		<.01		.07	33	2,000	52,000	50,000	100	1,800	1,700				GA 3
																		GA 4
																		GA 5
		2.2	.8					43		85,000			2,500		1,000			GA 6
97	68	•9	.2	.41		<.01		6.8	1,600	2,300	750		120	120	222	198		Mine drip

Figure 31.—Section from Backbone Mountain through site 1 to the North Branch Potomac River showing generalized ground-water flow.

Table 13.-Chemical analyses of water from Mettiki Coal Corporation observation wells, Garrett County, Md.

Well	Well depth (ft)	Geologic unit	Water level (ft)	рН	Hardness (mg/L as CaCO ₃)	Alkalinity (mg/L as CaCO ₃)	Sulfate (mg/L)
FA 25	315	Mahonning Sandstone	302	8.3	80	100	107
FA 26	170	Buffalo Sandstone	17	9.4	60	40	22
FA 27	215	Grafton Sandstone	170	11.0	520	380	81
FA 28	343	Mahonning Sandstone	107	9.8	60	40	26
FA 29	228	Saltsburg Sandstone	132	9.0	100	80	14

[Analyses reported by Mettiki Coal Corp., July 14, 1978. Samples collected and analyzed June 23, 1978.]

The trilinear diagram of figure 32 shows significant differences between water sampled from wells and water sampled from abandoned mine discharge points and from streams. The well samples presumably represent undisturbed conditions; they generally have fairly low total dissolved solids content (table 12) and, especially, relatively low sulfate. The abandoned mine drainage samples on the other hand, have high total dissolved solids, and dissolved sulfate dominates the anions—a result of the oxidation of sulfide minerals (pyrite) and the generation of acid. The North Fork and Laurel Run receive such acidic drainage, and their chemistries are affected all the way downstream.

The sample from well FB 25, the shallow well at site 2 (zone 4), plots between the well and stream samples in figure 32. This is evidence that the water from this well was a mixture of "undisturbed" ground water and recharge from leakage from the South Fork.

The mine-drip sample also plots between the well and stream samples in figure 32. This probably is not due to mixing of water, but, rather, to early stages of pyrite oxidation in the vicinity of the ventilated shaft.

The production of acid occurs as sulfide minerals (mostly pyrite, FeS_2) are exposed in the mine workings. The set of oxidation reactions, which requires exposure to oxygen to be initiated, is catalyzed by bacteria which can increase the rate-determining step (oxidation of ferrous iron by oxygen) by as much as six orders of magnitude (Singer and Stumm, 1970, p. 1,122). The reactions involved are:

(1)
$$\operatorname{FeS}_2 + \frac{7}{2} \operatorname{O}_2 + \operatorname{H}_2 \operatorname{O}$$

 $\longrightarrow \operatorname{Fe}^{2^+} + 2\operatorname{SO}_4^{2^-} + 2\operatorname{H}^+$

- (2) $\operatorname{Fe}^{2+} + \frac{5}{2}\operatorname{H}_2\operatorname{O} + \frac{1}{4}\operatorname{O}_2 \longrightarrow \operatorname{Fe}(\operatorname{OH})_3(s) + 2\operatorname{H}^+.$
- (3) $\operatorname{Fe}^{2+} + \frac{1}{2} \operatorname{O}_2 + \operatorname{H}^+ \longrightarrow \operatorname{Fe}^{3+} + \frac{1}{2} \operatorname{H}_2 \operatorname{O}.$
- (4) $\text{FeS}_2 + 14\text{Fe}^{3+} + 8\text{H}_2\text{O}$ \longrightarrow 15 $\text{Fe}^{2+} + 2\text{SO}_4^{2-} + 16 \text{H}+.$

These reactions, and the role of bacteria in them, are well described by Kleinmann and others (1981). The reaction cycle is self-reinforcing. At first the bacterial role is minor, but if the cycle proceeds far enough, bacterial action controls the rate of acid production. Limiting the oxidation of ferrous iron (reaction 3) by decreasing available oxygen (for example, flooding the mine) is not always feasible; Kleinmann and others (1981) discuss field tests involving use of bactericides to limit this oxidation step.

Figure 32. - Chemistry of ground and surface water in the study area.

54

Components of the Budget

A general equation for water balance in a drainage basin is:

$$INPUT = OUTPUT$$

$$\mathbf{P} + \mathbf{I} = \mathbf{R} + \mathbf{ET} + \mathbf{E} + \Delta \mathbf{S}$$

where

- P = precipitation;
- I = water imported into the basin;
- R = total runoff (discharge past the gage);
- ET = evapotranspiration;
 - E = water exported outside the basin; and

 $\triangle S$ = change in basin storage.

The terms for water imports and exports are important in the study area because of the extent of underground mines and interbasin transfers of mine pumpage. Evapotranspiration was estimated using the method of Thornthwaite and Mather (1957). Change in basin storage was calculated at the residual term and was found to be approximately equal to mine pumpage.

Evaluation of the Budget

Precipitation and total runoff were measured for water year 1981. Water imported into the study area through the abandoned Kempton Mine was estimated from discharge measurements at GA 3 and GA 6. Other interbasin transfers could not be quantified. Evapotranspiration was estimated as 23 in. For the three basins of the study area, an approximate evaluation of the hydrologic budget is:

It is assumed that precipitation and evapotranspiration occurred uniformly throughout the area. For the threebasin area, an estimated 4 in. has been lost from storage for the 1-year period (fig. 33). This loss represents water pumped out of the active mines. Large water-level declines did not spread far from the undermined areas because of low transmissivity of the formations. Storage losses were therefore concentrated in the vicinity of mine workings.

FUTURE WORK

Mining in the area is scheduled to continue for a number of years after the present study is completed. A follow-up study will evaluate changes in conditions that have occurred since the present study and will be done in several phases. At the conclusion of each phase, specific needs for succeeding phases will be evaluated. The work will continue throughout the mining operation and recovery period. Future work will aid in describing the hydrologic systems in the coal basins of Maryland, and documenting and interpreting the impacts of underground coal mining on the hydrologic system.

Some possible consequences of underground coal mining are shown in figure 34. The continuing study will attempt to quantify these effects using the approach discussed below. The existing data-collection network will be utilized although some of the wells will be destroyed when mining extends beneath them. Maintenance of water-level, stream-stage, and stream waterquality recorders will continue, if possible, at all current data-collection sites. Mine-pumpage and treated-water discharge records will be kept to assist in hydrologic analyses. This will help to evaluate the effects of interbasin water transfers, surface-water-quality assessments, and ground-water storage changes.

Well hydrographs will be inspected for trends in water-level changes and especially for large declines as mining approaches. When such changes do occur, the relative declines will be compared to those already noted at site 1, both with respect to magnitude of decline and distance to the mine heading. Water-level recoveries and fluctuations will also be examined with respect to minedewatering pumpage records.

Possible changes in aquifer characteristics will be investigated through the use of slug tests and, in the shallower wells, pumping tests. These tests should help to determine the degree of fracturing in the different zones above the Upper Freeport coal. Caliper logs for the open-hole segments may also help determine the extent of fracturing. Areal transmissivities will be

Figure 33.—Approximate hydrologic budget for water year 1981. (October 1980–September 1981). Dashed arrows indicate inter-basin transfers through abandoned mines or active mining operations. recalculated and compared with the values already obtained.

Streamflow measurements will be compared with earlier data. Baseline characteristics cannot be estimated with much accuracy due to the short period of record; however, changes in tributary contributions may be identified along with contributions from mine drainage (and withdrawals for use in coal preparation and reclamation). As the drainage basins are undermined, low flows may decrease due to induced streambed leakage.

Sampling will continue on a regular basis, although fewer parameters will be analyzed in the laboratory. Water temperature and specific conductance will be monitored continuously at the three gaging stations. Additional samples will be obtained from seepage into the mines. Changes in the quality of effluent from the abandoned mines may have an impact on downstream water quality. The abandoned Buffalo Coal Company Mine, which discharges to the North Fork, is receiving sludge from Mettiki's acid mine drainage treatment (limestone neutralization) facilities. This may have the effect of raising the pH and dissolvedsolids content. Future acid mine drainage abatement efforts, particularly regarding drainage from the abandoned Kempton Mine, will be investigated for effects in the study area.

Seepage investigations will be undertaken to identify additional areas of streambed seepage losses as greater areas are undermined. Tributary contributions to streamflow and water quality will be included in the investigations. These data will assist low-flow characterization and will be helpful in describing stream/ aquifer relations. Headwater and mouth areas will be investigated for differences in consequences due to mining. The hydrologic budget will be estimated and compared to the data presented in this report. Changes are expected due to withdrawals from ground-water storage (mine dewatering) and induced streambed leakage (as greater areas of the drainage basins are undermined). Fracturing above areas that have been mined (pillars taken) may allow greater recharge to the deeper zones, and lowered water tables (where present) may reduce evapotranspiration.

Analysis of these data may indicate that use of digital-simulation modeling is appropriate. Such a model could be very helpful in describing the groundwater flow system, quantifying aquifer interactions, and evaluating the hydrologic budget. If it appears that such a model can be developed for this setting, a separate project will be proposed to undertake its design and calibration. Stoner (1983) used a two-dimensional crosssectional model to help describe the hydrologic system in a similar area in southwestern Pennsylvania, and to predict hydrological consequences of mine dewatering. Because of some differences between study areas (more steeply dipping strata in southwestern Garrett County), it might be necessary to utilize a three-dimensional model. Additional models to evaluate potential impacts on water quality and streamflow may also be developed. Saulnier and Goddard (1982) discuss the application of several such models.

Streamflows and surface-water-quality data will be published annually as part of the U.S. Geological Survey's Water-Data Report series. Reports assessing impacts on the hydrologic system and presenting additional data are anticipated for publication during the several phases of the follow-up study.

SUMMARY

A large underground coal mine recently began operation in southwestern Garrett County, Md. The present study was undertaken to describe the hydrogeologic system of the area to be mined and to document changes in the hydrologic regime as a result of mining. Mining encompasses three main drainage basins, all of which are tributary to the North Branch Potomac River. Mining of the Upper Freeport coal of the Allegheny Group (Pennsylvanian) began in the direction of dip, on the northwest limb of a northeastplunging syncline.

Gaging stations were constructed on the three main streams—the North and South Forks of Sand Run, and Laurel Run. Water-quality monitors were also installed at these stations. Additional stream sites were chosen for periodic measurements of flow and water quality. Thirteen wells were drilled in three clusters, and water-level recorders were installed on each well. Water levels were measured periodically in six additional wells. Precipitation and mine-water discharge records were provided by the mine company.

Ground water in the study area occurs in three flow systems: shallow, intermediate, and deep. All are controlled by fracture permeability. Hydraulic conductivity of the shallow flow system is about two orders of magnitude greater than that of the deeper systems. The base of the fresh ground-water system was observed in well FA 31 at a depth of about 940 ft. The deep flow system, under considerable head, is probably part of a regional system whose recharge area may be approxFigure 34.—Some possible consequences of underground coal mining on the hydrologic system. The block corresponds approximately to the basin of the South Fork of Sand Run.

BEFORE MINING —	(1)	A few fracture zones already exist, due to natural stresses.
	(2)	The regional flow system is effectively separated from shallower systems by underclay.
DURING MINING —	(3)	Water table is lowered in vicinity of active mining.
	(4)	Ground water flows into mine as a result of lowered pressure due to dewatering.
	(5)	Streamflow and water quality are affected by withdrawals for coal treatment and addi-
		tions of treated mine pumpage.
	(6)	Undermined stream reaches lose water by leakage through the stream bed.
AFTER MINING —	(7)	Land surface subsides as overburden collapses into mine.
	(8)	Mine becomes an effective ground-water conduit.
	(9)	Fractures develop as overburden collapses into mine.
((10)	Vertical flow is made easier by fracturing.
. ((11)	Fractures increase transmissivity and storage.
((12)	Baseflow increases, fed by increased upward leakage.

imately 10 mi south-southeast of the study area and may discharge to the Cheat River valley about 10 mi west of the study area.

Earlier episodes of mining within the study area have had significant effects on the hydrologic system, most noticeably on stream-water quality. Three acid mine-drainage sites were identified in the study. Abandoned surface-mine areas are being used for disposal of mine spoil from current mining.

Effects of current mining, which mainly resulted from mine dewatering, also were assessed during the study period. Water levels within several hundred feet of the A Mine dropped significantly; the greatest drop was more than 370 ft in well FA 32, which is open above the Upper Freeport coal. The smallest decline at that site was in the shallowest well, FA 34 (about 77 ft). The water-level decline in FA 31, open below the coal, was only slightly greater than that in the shallow well, indicating the degree to which the underclay inhibits ground-water flow.

Sections of Laurel Run were found to be losing reaches. Measured losses were 0.4 and 0.8 $(ft^{3}/s)/mi$. No losses were measured in an earlier seepage run made before undermining reached these areas. Discharges of treated mine pumpage into two streams contributed significantly to their flow. The periods of discharge into the streams were irregular; the rate of discharge was generally about 3 ft³/s. Flow past the gage on the South Fork was also affected by water withdrawals. Supply water for the coal-treatment plant was withdrawn from a pond constructed between the AMD treatment facility discharge point and the stream gage. The impact of withdrawal was to diminish streamflow past the gage.

Interbasin transfers affected streamflow. Laurel Run had the highest annual mean discharge per square mile (3.16 ft³/s). This may be due to the addition of drainage of water from outside the Laurel Run basin through the abandoned Kempton Mine.

Surface-water quality was affected by discharge of treated mine pumpage. Treatment of this water raised its pH and removed dissolved iron, but increased the total dissolved solids content. When the AMD treatment facility was temporarily inoperative, pH of water sampled at the gage dropped to 4.2, and conductivity dropped from about 870 to about 650μ mhos/cm.

Ground-water samples were obtained from eight observation wells. Most samples from deeper wells showed pH values as high as 11.6. These values may not be representative of formation water, but may indicate a reaction of the well water with cement grout. High dissolved sulfate content in one of the shallow wells (FB 25) indicates that the aquifer may be obtaining recharge from the South Fork, which has a high sulfate content resulting from the discharge of treated acid mine drainage into the stream.

A program for continued data collection was set up to monitor the hydrologic system as mining progresses.

- Amsden, T. W., 1954, Geology of Garrett County, in Amsden, T. W., Overbeck, R. M., and Martin, R. O. R., 1954, Geology and water resources of Garrett County, Maryland: Maryland Department of Geology, Mines and Water Resources, Bulletin 13, p. 1-95.
- Barnes, Ivan, and Clarke, F. E., 1964, Geochemistry of ground water in mine drainage problems: U.S. Geological Survey Professional Paper, v. 473-A, 6 p.
- Barnes, Ivan, Stuart, W. T., and Fisher, D. W., 1964, Field investigation of mine waters in the northern anthracite field Pennsylvania: U.S. Geological Survey Professional Paper 473-B, 8 p.
- Biesecker, J. E., and George, J. R., 1966, Stream quality in Appalachia as related to coal-mine drainage, 1965: U.S. Geological Survey Circular 526, 27 p.
- **Bouwer, Herman, and Rice, R. C.,** 1976, A slug test for determining hydraulic conductivity of unconfined aquifers with completely or partially penetrating wells: Water Resources Research, v. 12, no. 3, p. 423-428.
- Carlston, C. W., 1963, Drainage density and streamflow: U.S. Geological Survey Professional Paper 422-C, 8 p.
- **Carswell, L. D., and Bennett, G. D.**, 1963, Geology and hydrology of the Neshannock quadrangle, Mercer and Lawrence Counties, Pennsylvania: Pennsylvania Geological Survey, 4th Series, Ground-Water Report W15, 90 p.
- Clark, W. B., Martin, G. C., Rutledge, J. J., Randolph, B. S., Stockton, N. A., Penniman, W. B. D., Browne, Arthur, 1905, Report on the coals of Maryland: Maryland Geological Survey, v. 5, pt. 4, 651 p.
- Curran, H. M., 1902, The forests of Garrett County, *in* Garrett County: Maryland Geological Survey, p. 303-329.
- Darton, N. H., and Taff, J. A., 1896, Piedmont folio: U.S. Geological Survey Geologic Atlas, folio 28.
- Donaldson, A. C., Presley, M. W., and Renton, J.J., 1979, Carboniferous coal short course and guidebook: Eastern Gas Shales Symposium, 3rd, Morgantown, West Virginia, 1979, American Association of Petroleum Geologists, 160 p.
- Emrich, G. H., and Thompson, D. R., 1968, Some characteristics of drainage from deep bitumious mines in western Pennsylvania, *in* Papers of Second Symposium on Coal Mine Drainage Research: Bituminous Coal Research, Inc., Monroeville, Pa., p. 190-222.
- **Federal Water Pollution Control Administration**, 1969, Stream pollution by coal mine drainage in Appalachia: Federal Water Pollution Control Administration, Ohio Basin Region, Cincinnati, Ohio, 261 p.

- Flint, N. K., 1965, Geology and mineral resources of southern Somerset County, Pennsylvania: Pennsylvania Geological Survey, 4th Series, County Report 56A, 267 p.
- Foster, J. B., 1980, Fresh and saline ground-water map of West Virginia: West Virginia Geological and Economic Survey, Map WV-12, scale 1:250,000.
- Harvey, R. W., 1974, Geology of the southern half of the Castleman basin: Morgantown, West Virginia University, unpublished M.S. thesis, 70 p.
- Hem, J. D., 1960, Some chemical relationships among sulfur species and ferric iron: U.S. Geological Survey Water-Supply Paper 1459-C, 268 p.
- Hem, J. D., and Cropper, W. H., 1959, Survey of ferrous-ferric chemical equilibria and redox potentials: U.S. Geological Survey Water-Supply Paper 1459-A, 268 p.
- Hobba, W. A., Jr., 1981, Effects of underground mining and mine collapse on the hydrology of selected basins, West Virginia: West Virginia Geological and Economic Survey, Report of Investigation 33, 88 p.
- Hollyday, E. F., and McKenzie, S. W., 1973, Hydrogeology of the formation and neutralization of acid waters draining from underground coal mines of western Maryland: Maryland Geological Survey, Report of Investigations 20, 50 p.
- Hopkins, T. C., Jr., 1966a, Western Maryland mine drainage survey, 1962-1965: Maryland Department of Water Resources, Water Quality Investigation Division, v. 1, pt. 1-5, 259 p.
- 1966b, Western Maryland mine drainage survey, 1962-1965: Maryland Department of Water Resources, Water Quality Investigation Division, v. 2, pt. 6, 251 p.
- 1966c, Western Maryland mine drainage survey, 1962-1965: Maryland Department of Water Resources, Water Quality Investigation Division, v. 3, pt. 7, 203 p.
- Kleinmann, R. L. P., Crerar, D. A., and Pacelli, R. R., 1981, Biogeochemistry of acid mine drainage and a method to control acid formation: Mining Engineering, v. 33, no. 3, p. 300-305.
- Knight, A. L., and Newton, J. G., 1977, Water and related problems in coal-mine areas: U.S. Geological Survey Water-Resources Investigation 76-130, 51 p.
- Kosnett, Jeff, 1981, Coal riches for Maryland: Maryland, v. 13, no. 3, p. 36-40.
- Krauskopf, K., 1967, Introduction to geochemistry: New York, McGraw-Hill, 721 p.
- Lohman, S. W., 1979, Ground-water hydraulics (3rd ed.): U.S. Geological Survey Professional Paper 708, 70 p.
- Lynch, E. J., 1962, Formation evaluation: New York,

Harper and Row, 422 p.

- Maryland Department of Health and Mental Hygiene, 1981, Water quality and water pollution control, Code of Maryland Regulations 10.50.01, Section 02, Receiving Water Quality Standards, 20 p.
- Martin, G. C., 1902, The geology of Garrett County, *in* Garrett County: Maryland Geological Survey, p. 55-182.
- Martin, R. O. R., 1954, Surface water resources, *in* Amsden, T. W., Overbeck, R. M., and Martin, R. O. R., 1954, Geology and water resources of Garrett County, Maryland: Maryland Department of Geology, Mines and Water Resources, Bulletin 13, p. 255-326.
- Meckel, L. D., 1967, Origin of Pottsville conglomerates (Pennsylvanian) in the central Appalachians: Geological Society of America Bulletin, v. 78, no. 2, p. 223-258.
- Miller, V. C., 1953, A quantitative geomorphic study of drainage basin characteristics in the Clinch Mountain area, Virginia and Tennessee: New York, Columbia University, Department of Geology, Technical Report no. 3, Office of Naval Research, Contract N60NR 27-130, 30 p.
- Minear, R. A., and Tschantz, B. A., 1976, The effect of coal surface mining on the water quality of mountain drainage basin streams: Journal Water Pollution Control Federation, v. 48, no. 11, p. 2,549-2,569.
- Morisawa, Marie, 1957, Accuracy of determination of stream lengths from topographic maps: Transactions, American Geophysical Union, v. 38, no. 1, p. 86-88.
- National Oceanographic and Atmospheric Administration, 1973, Monthly normals of temperature, precipitation, and heating and cooling degree days 1941-70: National Oceanographic and Atmospheric Administration, Climatography of the United States No. 81, (Delaware and Maryland).
- Nutter, L. J., Smigaj, M. J., and Knobel, L. L., 1980, Garrett County water-well records, chemical-quality data, ground-water use, coal test-hole data, and surface-water data: Maryland Geological Survey, Basic Data Report No. 11, 102 p.
- **Ogden, Lawrence**, 1965, Estimating transmissibility with one drawdown: Ground Water, v. 3, no. 3, p. 51-54.
- Overbeck, R. M., 1954, Ground water resources, *in* Amsden, T. W., Overbeck, R. M., and Martin, R. O. R., 1954, Geology and water resources of Garrett County, Maryland: Maryland Department of Geology, Mines and Water Resources, p. 117-254.
- Poth, C. W., 1963, Geology and hydrology of the Mercer quadrangle, Mercer, Lawrence, and Butler Counties, Pennsylvania: Pennsylvania Geological Survey, 4th Series, Ground Water Report W16, 149 p.

Presley, M. W., 1979, Facies and depositional systems

of Upper Mississippian and Pennsylvanian strata in the central Appalachians, *in* Donaldson, A. C., Presley, M. W., and J. J. Renton (eds.), Carboniferous coal short course and guidebook: sponsored by Eastern Section of American Association of Petroleum Geologists, October 1979, p. 1-50.

- Reger, D. B., 1924, Mineral and Grant Counties: West Virginia Geological Survey, County Reports, 866 p.
- **Rorabaugh, M. I.**, 1960, Use of water levels in estimating aquifer constants in a finite aquifer: International Association of Scientific Hydrology Commission of Subterranean Waters, Publication No. 52, p. 314-323.
- 1963, Estimating changes in bank storage and ground-water contribution to streamflow: International Association of Scientific Hydrology, Publication No. 63, p. 432-441.
- Saulnier, G. J., Jr., and Goddard, K. E., 1982, Use of mathematical models to predict impacts of mining energy minerals on the hydrologic system in northwestern Colorado: Mining Engineering, v. 34, no. 3, p. 285-293.
- Schumm, S. A., 1956, Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey: Geological Society of America Bulletin, v. 67, no. 5, p. 597-646.
- Singer, P. C., and Stumm, Werner, 1970, Acidic mine drainage: The rate-determining step: Science 167: p. 1,121-1,123.
- Stone, K. M., and Matthews, E. D., 1974, Soil survey of Garrett County, Maryland: U.S. Department of Agriculture, Soil Conservation Service, 83 p.
- Stoner, J. D., 1983, Probable hydrologic effects of subsurface mining: Ground Water Monitoring Review, v. 3, no. 1, p. 128-137.
- Strahler, A. N., 1952, Hypsometric (area-altitude) analysis of erosional topography: Geological Society of America Bulletin 63, no. 11, p. 1,117-1,142.
- 1954, Quantitative geomorphology of erosional landscapes: International Geological Congress, 19th, Algiers, Algeria, 1952, Proceedings, sec. 13, pt. 3, p. 341-354.
- Swartz, C. K., and Baker, W. A., Jr., 1922, Second report on the coals of Maryland: Maryland Geological Survey, Special Publication, v. XI, pt. 1, 288 p.
- Swartz, C. K., Price, W. A., and Bassler, Harvey, 1919, Coal measures of Maryland: Geological Society of America Bulletin, v. 30, p. 567-596.
- Thornthwaite, C. W., and Mather, J. R., 1957, Instructions and tables for computing potential evapotranspiration and the water balance: Drexel Institute of Technology, Laboratory of Climatology, Publications in Climatology, v. X, no. 3, 311 p.
- Toenges, A. L., and others, 1949, Investigation of lower coal beds in Georges Creek and north part of Upper

Potomac basins, Allegany and Garrett Counties, Maryland: U.S. Bureau of Mines, Technical Paper 725, 142 p.

- Trainer, F. W., and Watkins, F. A., Jr., 1975, Geohydrologic reconnaissance of the Upper Potomac River basin: U.S. Geological Survey Water-Supply Paper 2035, 68 p.
- Waagé, K. M., 1950, Refractory clays of the Maryland coal measures: Maryland Department of Geology, Mines and Water Resources, Bulletin 9, 182 p.
- Weaver, K. N., Coffroth, J. M., and Edwards, Jonathan, Jr., 1976, Coal reserves in Maryland—potential for future development: Maryland Geological Survey, Information Circular 22, 16 p.

APPENDIXES

APPENDIX A

Surface-Water-Quality Records

LAUREL RUN NEAR RED OAK, MARYLAND (01594923)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	FIELD	PH LAB	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
JULY, 1	980									
22 NOV	1230	9.6	700	3.1	3.0		21.0	6.0		120
06	1030	7.1	541	3.1	3.2		2.2			110
19	1330	38	297	3.0	3.4	11.0	5.4		10.3	59
14	1315	11	604	2.8	3.1	22.0	16.6		8.8	120
01	1300	5.2	731	2.6	3.0		14.2			150
05	1415	4.1	915	3.1	2.9	23.0	22.4		23.0	170
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	ACIDITY (MG/L AS H)	ACIDITY (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)
JULY, 1 22	.980	2.1	104	28	11	2.7	1.8	200	1.8	0.20
NOV 06	104	2.0	99	24	11	3.0	1.7	190	1.4	.10
FEB, 1 19	.981 59	1.5	74	14	5.9	1.4	1.1	91	.8	.10
MAY 14	124	2.1	104	30	12	3.1	1.9	220	2.0	.20
JULY 01	145			35	14	3.4	2.1	200	1.8	.20
AUG 05	173	3.2	159	41	17	5.0	2.6	290	2.0	.30
DATE	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER DAY)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JULY, J	17	357	276	9.3	4		0.13	0.17	0.13	0.17
NOV	18	305	263	5.8	12	85				.26
FEB, 1	1981	166	133	17.0	17	46				1.1
MAY 14	20	365	300	11.1	12	104				.28
JULY ^1	21	452	291	6.3	14	149				.12
AUG 05	25	533	393	6.0	10	159				.04
DATE	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	PHOS- PHORUS, DIS- SOLVED (MG/L AS P)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON DIS SOLV (UG/ AS P	MANG NESE N, TOTA S- RECO ZED ERAE ZL (UG/ SE) AS M	GA- MANG C, NESE AL SUS DV- PEND BLE RECC 'L (UG/ MN) AS M	A- , MANG - NESE DED DIS W. SOLV L (UG/ N) AS M	SA- S- VED VL 4N)
JULY, 22	1980 0.40	0.44	<0.01	<0.01	11000	110	000 11	.00	0 12	200

22	0.40	0.44	<0.01	<0.01	11000	11000	1100	0	1200
NOV									
06						12000			1100
FEB, 1981									
19						7200			570
MAY									
14						10000			1200
JULY									
01						12000			1400
AUG									
05						8900			1600
CHESTNUT RIDGE RUN NEAR RED OAK, MARYLAND (01594926)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	FIELD	PH LAE	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
JULY, 19	980										
22	1400		130	6.9	6.5	22.0	21.0	8.1		46	38
NOV											
06	0930	1.7	168	5.9	6.3	3.0	4.0			69	63
FEB, 19	981										
19	1230	14	78	4.6	5.0	11.0	2.6		12.0	32	31
MAY											
14	1215	2.2	157	5.8	6.6	25.0	14.7		9.3	60	35
JULY											
01	1215	2.0	178	5.7	5.8		15.2			72	66
AUG											
05	1330	.88	540	5.3	4.7	23.0	21.5		7.6	240	242
13	1325	.85		4.0		26.0	20.0		11.8		

DATE	ACIDI (MG/ AS H	TY L)	ACIDITY (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY FIELD (MG/L AS CACO3)	ALKA- LINITY LAB (MG/L AS CACO3)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
JULY, 1	980											
22	0	.1	5.0	13	3.2	1.3	1.2	8.0		2.0	38	1.3
NOV												
06		.1	5.0	20	4.7	2.3	1.5		6.0	15	62	2.0
FEB, 1	981				360 mm							
19		.2	9.9	8.5	2.6	.8	.8		1.0	49	26	2.8
MAY		1	F 0	17	1 0	0 F	1 2		25		5.1	2 0
14		• 1	5.0	17	4.2	2.5	1.3		25	//	21	2.0
01		. 1	5.0	21	4.8	2.0	1.3		6.0	23	73	1.6
AUG		• -	5.0			2.0	1.5		0.0	2.5	15	1.0
05		.1	5.0	73	15	7.3	3.6		2.0	19	250	3.5
13												

DATE	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER DAY)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, DIS- SOLVED (MG/L)	NITRO- GEN, NITRATE TOTAL (MG/L AS N)	NITRO- GEN, NITRATE DIS- SOLVED (MG/L AS N)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)
JULY, 19	980									
22 NOV	0.10	5.6	70	70		13		0.38	0.30	0.38
06	.20	4.8	116	102	.53	4	17			
19. IS	<.10	4.2	56	47	2.1	8	9			
MAY		1.2	50	47	2.1	0	2			
14	<.10	4.3	108	98	.64	6	20			
JULY										
01	<.10	5.0	126	113	.68	12	23			
AUG										
05	.10	6.9	394	362	.94	15	26			
13										

	NITRO-						MANGA-	MANGA-		
	GEN,	NITRO-		PHOS-	IRON,		NESE,	NESE,	MANGA-	
	NO2 + NO3	GEN	PHOS-	PHORUS,	TOTAL	IRON,	TOTAL	SUS-	NESE,	
	DIS-	DIS-	PHORUS,	DIS-	RECOV-	DIS-	RECOV-	PENDED	DIS-	
	SOLVED	SOLVED	TOTAL	SOLVED	ERABLE	SOLVED	ERABLE	RECOV.	SOLVED	
	(MG/L	(MG/L	(MG/L	(MG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	
DATE	AS N)	AS N)	AS P)	AS P)	AS FE)	AS FE)	AS MN)	AS MN)	AS MN)	
JULY, 1	1980									
22	0.30	0.54	0.010	<0.010	1400	160	450	0	460	
NOV										
06	.58					160			310	
FEB,]	1981									
19	1.3					130			500	
MAY										
14	.80					90			360	
JULY										
01	.56					220			510	
AUG										
05	.40					220			1400	
13										

DUTCH RUN AT RED OAK, MARYLAND (01594929)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	FIELD	PH LAB	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)
NOV,	1980									
06 FEB.	1200	0.60	120	4.9	5.6	8.5	5.3	10.3	48	45
19	1130	9.4	98	4.5	4.6	9.0	1.6	5.4	35	
14	1045	1.1	114	4.9	6.1	21.0	16.4	8.4	42	41
01	1015	.96	127	5.3	6.5		18.2		49	45
05	1230	.44	165	6.4	6.1	23.0 17.0	23.0	5.6	65	57

DATE	ACIDITY (MG/L AS H)	ACIDITY (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALKA- LINITY LAB (MG/L AS CACO3)	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)
NOV,	1980									
06	0.1	5.0	13	3.8	0.9	1.7	3.0	73	45	2.4
FEB, .	1981	0 0	0 1	2 0	7	0			26	1 4
MAY	• 2	9.9	9.4	2.9	• /	• 0			20	1.4
14	.1	5.0	11	3.5	1.0	. 8	1.0	24	43	1.4
JULY										
01			13	3.9	.8	.9	4.0	39	36	1.4
AUG										
05	.1	5.0	18	4.8	1.5	1.1	8.0	6.2	61	2.0
13										

			SOLIDS,	SOLIDS,		SOLIDS,		NITRO-		
	FLUO-	SILICA,	RESIDUE	SUM OF	SOLIDS,	RESIDUE	SOLIDS,	GEN,		MANGA-
	RIDE,	DIS-	AT 180	CONSTI-	DIS-	AT 105	VOLA-	NO2+NO3	IRON,	NESE,
	DIS-	SOLVED	DEG. C	TUENTS,	SOLVED	DEG. C,	TILE,	DIS-	DIS-	DIS-
	SOLVED	(MG/L	DIS-	DIS-	(TONS	SUS-	DIS-	SOLVED	SOLVED	SOLVED
	(MG/L	AS	SOLVED	SOLVED	PER	PENDED	SOLVED	(MG/L	(UG/L	(UG/L
DATE	AS F)	SIO2)	(MG/L)	(MG/L)	DAY)	(MG/L)	(MG/L)	AS N)	AS FE)	AS MN)
NOV,	1980									
06	0.10	4.5	88	75	0.14	6	16	0.21	630	1200
FEB,	1981									
19	<.10	4.7	66		1.7	8	6	.93	260	890
MAY										
14	<.10	4.8	86	68	.26	18	18	.32	870	1200
JULY										
01	.10	5.2	96	66	.25	14	25	.26	850	1300
AUG										
05	<.10	5.1	113	101	.13	18	17	.14	1300	1200
13										

LAUREL RUN AT DOBBIN ROAD NEAR WILSON, MARYLAND (01594930)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	FIELD	PH LAB	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	ACIDITY (MG/L AS H)
APR, 19	979											
18	1030	30	370	3.7		12.0	5.0		11.4	73	73	
JULY	1000	8 0	700	3 2			17 0			140	128	2.4
AUG	1000	0.0	100	5.2			17.0			2.00		
15	1000	15	463	3.0			16.0			97	96	1.4
21	1500	12	510	3.3		21.0	18.5		7.0	97		1.1
16	0930		395	3.5			8.0			76	74	
NOV	1045	25	100	2 7		2.0	2 5		12.2	70	70	9
APR. 10	1245	25	400	5.1		5.0	2.5		12.5	/0	70	.0
09	1030	12	143	3.8		13.0	7.5		10.0	40	40	.4
JULY	1020	27	410	2.4			20.0	4 0		70	77	1 1
SEP	1030	37	418	3.4			20.0	4.0		10	//	1.1
10	1415	9.9	622	2.4		18.5	17.5		8.4			1.7
OCT	1420	0 0	404	2 2	2.4	0 5	2.4	10	11 2	110	110	1.4
NOV	1430	9.2	424	3.3	5.4	9.5	3.4	.40	11.2	110	110	1.4
06	1030	10	406	3.0	3.0	5.0	4.0	7.5	11.6	82	83	1.3
DEC	0000	22	385	2 8	33	0	3 1		123			2
JAN, 19	981	22	505	2.0	5.5	.0	5.1		12.5			• 2
15	1500	8.0	589	2.9	2.9	-2.0	.0	.40	12.3	120		3.0
FEB 19	0830	69	147	3.3	3.7	7.0	2.4	4.9	4.9	40	40	.8
APR	0000	0.9	2.17	5.5	511	,	211					
09	0930	20	448	2.8	3.9	13.0	10.9	18	9.8	110	113	1.4
14	0815	16	497	2.8	3.2	17.0	12.5	6.9	10.0	98	98	1.5
JUNE												
26	1000	20	442	2.8	3.4	17.0	15.0	19	9.4	92	92	1.1
01	0900	10	568	2.8	3.2		15.5	3.8		120	115	1.8
AUG		6.5								1.60	1.60	
05 SEP	0930	6.3	/45	3.5	3.1	23.0	21.2	.40	8.0	160	163	2.0
17	1055	15	422	3.0	3.4	13.0	12.9	8.2	9.2	99	99	1.2
	ACIDITY (MG/L	CALCIUM DIS- SOLVED	MAGNE- SIUM, DIS- SOLVED	SODIUM, DIS- SOLVED	POTAS- SIUM, DIS- SOLVED	SULFATE DIS- SOLVED	CHLO- RIDE, DIS- SOLVED	FLUO- RIDE, DIS- SOLVED	SILICA, DIS- SOLVED (MG/L	SOLIDS, RESIDUE AT 180 DEG. C DIS-	SOLIDS, SUM OF CONSTI- TUENTS, DIS-	SOLIDS, DIS- SOLVED (TONS DEP

	(MG/L AS	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED (MG/L	SOLVED	(MG/L AS	DIS- SOLVED	DIS- SOLVED	(TONS PER
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	AS SO4)	AS CL)	AS F)	SI02)	(MG/L)	(MG/L)	DAY)
APR, 1	979											
18		18	6.9	1.5	1.2	110	1.2	0.10	10		157	12.7
11	119	36	13	4.8	2.0	250	3.8	.20	19	404	353	8.7
AUG												0.02
15	70	25	8.4	1.8	1.6	160	2.6	.20	12	253	219	10.0
OCT	04	24	5.0	2.2	1.4	100		•20	14	205		5.2
16		19	6.9	1.6	1.2	110	1.2	.20	11	179	159	
15	40	19	7.4	2.1	1.3	130	1.1	.20	13	202	181	13.6
APR, 1	980				2.5	100	1.1	.20	15	202	101	10.0
09	20	11	3.0	.8	.9	42	.9	.10	5.3	94	66	3.0
22	55	20	6.8	1.9	1.4	120	1.6	.20	10	280	169	28.0
SEP												
10	84					200				332		8.9
27	70	24	12	14	1.9	140	1.9	.10	17	252	219	6.3
NOV	65	20	7.0	2.4	1 7	1.40	1 0	0.0	10	017	2.0.4	5 0
DEC	6.5	20	7.9	2.4	1./	140	1.2	.20	13	217	194	5.9
16	9.9					140				193		11.5
JAN, 1	981	20	11	2 1	1.0	100	1.6	2.0	20	220	200	7 2
FEB	149	50	11	3.1	1.9	190	1.0	.30	20	339	280	1.3
19	40	9.8	3.7	1.0	.8	52	1.3	.10	7.3	96	80	17.9
APR 09	70	30	9.2	2.0	1.5	150	1 9	20	17	258	225	13 9
MAY		50		2.0	1.5	150	1.5	.20	17	250	225	13.5
14	74	24	9.3	2.6	1.6	160	1.8	.20	14	273	220	11.8
26	55	23	8.4	2.0	1.5	130	1.4	.20	13	233	185	12.6
JULY												
01 AUG	89	28	11	2.8	1.8	190	1.9	.20	16	317	257	8.6
05	99	42	14	4.6	2.5	200	2.2	.20	19	468	291	7.9
17	60	27	7.7	2.4	1.6	150	1.6	.10	11	261	209	10.6

LAUREL RUN AT DOBBIN ROAD NEAR WILSON, MARYLAND (01594930) (CONTINUED)

DATE	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)
100 1	070											
18			0.47									
11		.08						<.010		6900		<1
15		.26						<.010				3
21												
16		.44						.000				
15			.37									
09			.56									
22	14	.17	.17	.22	.28	.39	.45	.020				
10												
27 NOV	15	.26	.26	.27	.18	.53	.44	.010	6000	5000	0	1
06 DEC	2	.32	.32	.08	.05	.40	.37	.000				
16 JAN, J												
15 FEB	14	.23	.27	.20	.19	.43	.46	<.010	6500	6500	1	1
19 APR	21	1.1	1.1	.20	.10	1.3	1.2	.020				
09 MAY	21	.40	.29	.22		.62		<.010	5300	5100	1	1
14 JUNE	8	.37	.36	.43	.31	.80	.67	<.010				
26 JULY	8	.37	.41	.10	.16	.47	.57	<.010				
01	7	.27	.24	.47	.31	.74	.55	.010				
05 SEP	14	.13	.16	.59	.51	.72	.67	.030				
17	18	.29	.31	.38	.27	.67	.56	<.010	5300	1700	2	1

DATE	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)
ADD 1	070											
18												
JULY												
11			30	4				3			2	
AUG			FO	2				2		1000		
21	0		50						<10			10
OCT	0								(10			10
16												
NOV												
15												
APR, 1	980											
U9												
22												
SEP												
10												
OCT			120101				72					
27		200	70		0	0	0	0		10	<10	
NOV												
DEC								1000 A				
16												
JAN, J	1981											
15		< 50	40		10	10	0	3		10	10	
FEB												
19												
09		100	40		10	10	0	1		<10	<10	
MAY		100	10		10	10	0	1		110	(10	
14												
JUNE												
26												
JULY												
01												
05												
SEP												
04												
17		100	< 50		<10	<10	10	1		20	10	

LAUREL RUN AT DOBBIN ROAD NEAR WILSON, MARYLAND (01594930) (CONTINUED)

DATE	COBALT DIS- SOLVED (UG/L AS CO	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G) AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)
APR,	1979										
18	-					5600	5500				
11	8	7		9		5400	5800			10	
15	5	4		4		5000	5000			<2	
21	-	- 20			30	4200	4200	220000			20
OCT											
16	-					6400	6300				
15	_					6600	6600				
APR.	1980					0000	0000				
09						5700	1600				
JULY											
22	-					5200	4300				
10						5300	4600				
OCT											
27			12	8		10000			0	7	
NOV						5000	5600				
06	-					5800	5600				
16						7700	7900				
JAN,	1981										
15	-		30	6		10000	11000		0	0	
FEB						4700	2100		Martino		
APR						4700	3100				
09			7	44		5900	6600		5	0	
MAY											
14						5000	5000				
26	-					4400	4400				
JULY						1100	4400				
01						4700	4600				
AUG						5300	1200				
CED	-					5100	4300				
17			10	3		4800	4600		<100	5	

LITHIUM DIS- SOLVED (UG/L AS LI)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)
1070										
	760	790								
. 40	1300	1300			<.5		<1		170	
. 30	1200	1200			<.5		×1		85	
	1000	1200	40			.00				
	0.4.0	0.50								
	840	860								
	810	770								
1980										
	480	470								Tool and a
	850	870								
	1200	1300								
	1100	970		<.1	<.1			100	94	0
	800	800								
	890	870								
1981										
•	980	1200		<.1	<.1			110		0
	480	490								
	990	1100		<.1	<.1			99	130	0
	950	960								
	950	970								
	1000	1000								
	1400	1466								
•	1400	1400								
	800	880		<.1	<.1			83	83	<1
	LITHIUM DIS- SOLVED (UG/L AS LI) 1979 . 40 	LITHIUM DIS- SOLVED (UG/L AS LI) 1979 1979 1000 1980 1980 1980 1980 1980 1200 1200 1200 1200 1200 1200 1200 1200 1200 1200 1000 1200 1000 1000 1000 1200 1000 1000 1200 1000 1000 1200 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1000 1200 1000 1200 1000 1200 1000 1200 1000 1200 1000 1200 10000 	MANGA- NESE, NESE, NESE, DIS- SOLVED MANGA- NESE, DIS- SOLVED 015- 0107 TOTAL NESE, DIS- SOLVED MANGA- NESE, DIS- SOLVED 101 DIS- SOLVED DIS- SOLVED 100 LITHIUM NESE, DIS- SOLVED NESE, DIS- SOLVED 100 LIG/L (UG/L AS MN) AS MN) 1979 760 790 . 40 1300 1300 . 840 860 . 810 770 . 480 470 . 850 870 . 890 800 . 890 800 . 980 1200 . 980 1200 . 990 1100 . 950 970 . 1000 1000 . 1000 1000	MANGA- NESE, DIS- SOLVED MANGA- NESE, RECOV- UG/L (UG/L AS LI) MANGA- NESE, RECOV- UG/L (UG/L AS MN) MANGA- NESE, FM BOT- TOM MA- TERIAL (UG/L AS MN) 1979 760 790 40 1300 1300 30 1200 1200 840 860 840 860 1980 850 870 850 870 - 800 800 - 890 870 - - 1981 980 1200 - 950 960 - - 950 970 - - -	MANGA- NESE, DIS- SOLVED MANGA- NESE, RECOV- SOLVED MANGA- NESE, RECOV- DIS- SOLVED MARGA- NESE, FM BOT- SOLVED MERCURY TOTAL RECOV- SOLVED 1979 760 790 760 790 40 1300 1300 1000 1200 40 840 860 840 860 810 770 850 870 1000 1300 850 870 890 870 980 1200 950 970 950 970 950	MANGA- NESE, DIS- SOLVED MANGA- RECOV- ERABLE (UG/L (UG/L AS LI) MANGA- NESE, RECOV- DIS- SOLVED MANGA- NESE, TOTAL (UG/L (UG/L (UG/L (UG/L AS MN) MERCURY RECOV- FM BOT- TOM MA- TERIAL (UG/G) MERCURY RECOV- ERABLE (UG/L AS HG) 1979 40 1300 1300 <.5	MANGA- NESE, DIS- SOLVED MANGA- TOTAL RECOV- SOLVED MANGA- TOTAL DIS- SOLVED MANGA- TOTAL DIS- SOLVED MERCURY TOTAL DIS- SOLVED MERCURY TOM MA- SOLVED MERCURY TO	NANGA- DIS- SOLVED NANGA- TOTAL TOTAL SOLVED NANGA- NESE, DIS- SOLVED NANGA- NESE, DIS- SOLVED NANGA- RECOV. TOTAL SOLVED MERCURY TOTAL TOTAL SOLVED MERCURY TOTAL SOLVED MERCURY TERIAL SOLVED MOLYB- TERIAL SOLVED 100/L CUG/L (UG/L AS LI) NAS MN) NAS MN) TOTAL AS MN) NAS MN) NAS MN) NAS MN) NAS MN) 1979 .40 1300 1300 . . .30 1200 1200 . . 840 860 . . 840 860 . . 840 860 . . 880 870 . . 980 1200 . . .	MANGA- NESE, SOLVED MANGA- TOTAL TOTAL SOLVED MANGA- NESE, DIS- SOLVED MANGA- NESE, DIS- SOLVED MANGA- NESE, DIS- SOLVED MERCURY RECOV- TOM NA- SOLVED MERCURY RECOV- TOM NA- SOLVED MOT- RECOV- TOM NA- SOLVED NICKEL, RECOV- CUG/L 100/L AS MN JIS- SOLVED TOTAL RECOV- TOM NA- SOLVED NICKEL, RECOV- TOM NA- SOLVED NICKEL, RECOV- TOM NA- SOLVED NICKEL, RECOV- TERNAL NICKEL, NICKEL, NICKEL, NICKEL, NICKEL, NICKEL, NICKEL, NICKEL, NICKEL, NICKEL, NI	NANGA- ILITHIUN DIS- SOLVED MANGA- NESE, PRADL MANGA- NESE, SOLVED MANGA- PRECUY ICA SOLVED MERCURY FM BOT- TOTAL MERCURY NERCUY- RECOV- SOLVED MERCURY FM BOT- SOLVED MERCURY FM BOT- TOTAL MERCURY RECUY- RECOV- ICA ICA MERCURY FM BOT- SOLVED MERCURY FM BOT- TOTAL MERCURY RECUY- RECOV- ICA MERCURY FM BOT- SOLVED MERCURY FM BOT- TOTAL MERCURY RECUY- RECOV- ICA MERCURY FM BOT- SOLVED MERCURY FM BOT- TOTAL MERCURY FM BOT- TOTAL MERCURY FM BOT- TERLAL MERCURY FM BOT- SOLVED MERCURY FM BOT- TERLAL MERCURY F

LAUREL RUN AT DOBBIN ROAD NEAR WILSON, MARYLAND (01594930) (CONTINUED)

		SELE-						ZINC,			
	SELE-	NIUM,	SILVER,		STRON-	ZINC,		RECOV.			
	NIUM,	TOTAL	TOTAL RECOV-	SILVER,	TIUM,	TOTAL RECOV-	ZINC,	FM BOT-	CARBON,	CVANTOR	
	SOLVED	TOM MA-	ERABLE	SOLVED	SOLVED	ERABLE	SOLVED	TERIAL	TOTAL	TOTAL	PHENOLS
	(UG/L	TERIAL	(UG/L	(UG/L	(UG/L	(UG/L	(UG/L	(UG/G	(MG/L	(MG/L	TOTAL
DATE	AS SE)	(UG/G)	AS AG)	AS AG)	AS SR)	AS ZN)	AS ZN)	AS ZN)	AS C)	AS CN)	(UG/L)
APR, 19	79										
18											
JULY											
11	<1			<2	210		400				
AUG	Z 1				120		240				
21		0			120		240	60			
OCT											
16											
NOV											
15											
APR, 19									3.7		
JULY									5.7		
22											
SEP											
10											
OCT	0		0	0		270	240				
NOV	0		.0	0		270	240				
06									1.9	.00	4
DEC											
16											
JAN, 19	981		0	0		350	370				
FEB	0		0	0		550	570				
19									1.4	<.01	0
APR											
09	0		1	0		300	350		1.2		
MAY									1 4	< 01	0
JUNE									1.4	1.01	0
26									2.9		
JULY											
01									1.7		
AUG	_								1.6	< 01	Z 1
SEP									1.0	1.01	
17	<1		<1	<1		250	240		1.2		

NORTH BRANCH POTOMAC RIVER AT WILSON, MARYLAND (01594931)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	FIELD	PH LAB	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	ACIDITY (MG/L AS H)
APR, 19	979										
18	1230	91	460	4.8		12.0	9.0	10.0			
AUG											
21	1145	36	710	3.9		20.5	.19.0	7.7			.6
NOV											
15	1430	62	390	4.6		2.0	3.0	12.2			.4
APR, 1	1245	250	100	4 7	11200	10 0	10 5	0 1	0.2	0.0	1
CFD	1345	350	189	4./		18.0	10.5	9.1	02	80	• 1
10	1230	23	1070	3.5		16.5	19.3	8 5			. 6
DEC	1250	20	1070	5.5		10.0	19.5	0.0			••
16	1145	65	588	3.7	4.3	.0	2.9	12.5			.3
AUG, 19	981										
25	0930	14	2000	4.4	4.7	15.0	17.5	8.6			.8

			MAGNE-		POTAS-	ALKA-	CARBON		CHLO-	FLUO-	SILICA,
		CALCIUM	SIUM,	SODIUM,	SIUM,	LINITY	DIOXIDE	SULFATE	RIDE,	RIDE,	DIS-
	ACIDITY	DIS-	DIS-	DIS-	DIS-	FIELD	DIS-	DIS-	DIS-	DIS-	SOLVED
	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L	SOLVED	SOLVED	SOLVED	SOLVED	(MG/L
	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS	(MG/L	(MG/L	(MG/L	(MG/L	AS
DATE	CACO3)	AS CA)	AS MG)	AS NA)	AS K)	CACO3)	AS CO2)	AS SO4)	AS CL)	AS F)	SIO2)
APR, 19	979										
18								190			
AUG											
21	30							350			
NOV											
15	20					.0	.0	150			
APR, 1	980										
09	5.0	28	3.0	1.1	.9	2.0	77	68	.9	.10	4.1
SEP											
10	27					.0	.0	480			
DEC											
16	17					.0	.0	240			
AUG, 1	981										
25	41					.0	.0	800			

DATE	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER DAY)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)
APR,	1979									
18										2100
AUG										
21	532		51.7		<1	<10	20	<10	20	1400
NOV										
15	240		40.2							3300
APR,	1980									
09	137	108	129	.47						3800
SEP										
10	823		51.1							1600
DEC										
16	369		64.8							2800
AUG,	1981									
25	1810		68.4							1200

DATE	IRON, DIS- SOLVED (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)
APR, 19	79									
18	1400			360	370					
AUG										
21	920	42000	10	620	630	150	<.01	<1	50	
NOV										
15	2000			480	500					
APR, 19	080			200	0.10					
09	500			290	240					4.1
JO	970			610	640		2/22/2			
DEC	070			010	040					
16	180			400	380					
AUG. 19	81			400	500					
25	430			790	860					

SOUTH FORK SAND RUN AT MOON RIDGE (01594932)

DATE	T	IME	STRE FLO INST TANE (CF	AM- W, AN- COUS S)	SPE- CIFI CON- DUCT ANCI (UMHO	(C 	FIELD	PH	LAB	TEMPE ATUR AIR (DEG	R- E, C)	TEMPE ATUR (DEG	C)	XYGE DIS SOLV (MG/	N, ED L)	HARD- NESS (MG/L AS CACO3)	HAF NES NONC BONA (MC CAC	ND- SS, CAR- ATE S/L CO3)
NOV, 19 05	980 1:	230	0	.59		815	6.9		7.4	5	.0	5	.7	9	.7	93		60
FEB, 19 20	981 1:	130	8	.4			7.0			8	.0	3	.0	9	.5			
MAY 14	14	115		.75		L83	6.3		7.4	27	.0	16	.7	8	.4	69		44
JUNE 30	14	100		.99	3	206	6.7		7.0			17	.0			90		68
AUG 12	1	330		.12		578	6.8		6.7	23	.0	19	.8			230		222
DATE NOV, 1: 05 FEB, 1: 20 MAY	ACII (M AS 980 981	DITY G/L H) 0.0	ACIE (MG P CAC	0.0 0.0	CALC DIS- SOL ¹ (MG, AS	IUM JED S /L (CA) A 9	AGNE- SIUM, DIS- OLVED MG/L S MG) 4.9 	SOD DI SOL (M AS	IUM, S- VED G/L NA) 28	POTA SIU DIS SOLV (MG/ AS F	() () () ()	CARE DIOXI DIS SOLV (MG/ AS CC	SON DE S ED (L 2) A	ULFA DIS- SOLV (MG/ S SO 100	TE ED L 4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL) 2.2	FLU RII DJ SOI (MC AS	JO- DE, IS- LVED G/L F) 0.10
JUNE		•1		5.0	2.	L	4.0		6.1	1	•1	24		56		1.4	<	.10
30 AUG					21	3	4.8		3.1	1	.3	8	.5	65		1.1	<	<.10
12					7	1	14		48	8	8.0	4	.0	300		1.9		.10
DA	TE	SILI DIS SOL (MG AS SIO	CA, - VED /L 2)	SOLII RESII AT 18 DEG DIS SOLV (MG,	DUE 30 . C S- 7ED (L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVEI (MG/L)	SOL I DI SOI (TC) PE DP	IDS, IS- IVED DNS ER AY)	SOLI RESI AT 1 DEG. SUS PEND (MG	DS, DUE S 05 C, ED S /L)	SOLII VOLI TILI DIS- SOLVI (MG,	DS, A- 1 E, - ED /L)	NITRO GEN, NO2+NC DIS- SOLVE (MG/I AS N))-)3 - ED	IRON, DIS- SOLVE (UG/I AS FE	MA NE D SC L (U C) AS	NGA- SE, IS- LVED G/L MN)	
NOV 05	, 1 	980	4.0	1	210	190) (.33		25		21	0.5	0	18	0	180	
FEB 20	, 1 1	981											-					
MAY 14			3.7		122	109	9	.25		14		26	.5	59	9	0	120	
30	•••		4.7	3	146	121	L	.39		17		29	.4	3	6	50	140	
AUG 12			7.4		463	455	5			8		24	.3	34	13	80	1700	

SOUTH FORK SAND RUN NEAR WILSON, MARYLAND (01594934)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	PH FIELD	LAB	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
JULY, 19	979										
12 AUG	1100	1.9	240	7.4			18.0	4			110
14	1315	2.6	272	6.4			18.0	10			100
16	1100		125	5.7			9.0	0			41
09	1130	19	138	6.7		17.0	9.0			9.7	57
07	0930	2.7	150	6.1		14.0	13.5			9.4	60
10	0845	.93		6.8		11.0	15.2			9.5	
27	1300	1.8	679	7.1	7.3	10.0	6.8		.60	9.9	280
05	1030	.48	620	6.9	7.4	6.0	6.3		5.3	9.2	260
16	1015	1.8	335	6.0	6.8	.0	2.3			12.2	
JAN, 1 15	1100	.09	570	6.5	7.2	-2.0	.0		2.2	12.2	250
20	0900	12	212	6.8	7.1	8.0	2.5		39	12.7	89
APR 09	1130	2.8	594	6.3	6.9	13.0	9.8		4.1	9.6	350
MAY 14	1530	.73	629	6.4	7.0	27.0	20.1		.55	7.9	280
JUNE 26	1230	5.2	309	6.8	6.6	26.0	19.5		45	8.7	140
30 AUG	0945	3.4	570	6.6	6.4	26.0	18.9		1.6	8.4	290
SEP	0945	.15	959	6.0	7.0	20.0	21.3		.70		510
1/	1315	3.5	6/1	4.2	4./	14.0	17.0		1.7	8.1	350
DATE	HARD- NESS, NONCAR- BONATE (MG/L CACO3)	ACIDITY (MG/L AS H)	ACIDITY (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	ALKA- LINITY LAB (MG/L AS CACO3)
DATE JULY, 1	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979	ACIDITY (MG/L AS H)	ACIDITY (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS CACO3)	ALKA- LINITY LAB (MG/L AS CACO3)
DATE JULY, 1 12 AUG	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82	ACIDITY (MG/L AS H)	ACIDITY (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA) 36	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34	CAR- BONATE FET-FLD (MG/L AS CO3) 0	ALKA- LINITY FIELD (MG/L AS CACO3) 28	ALKA- LINITY LAB (MG/L AS CACO3)
DATE JULY, 1 12 AUG 14 OCT	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80	ACIDITY (MG/L AS H)	ACIDITY (MG/L AS CACO3)	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31	CAR- BONATE FET-FLD (MG/L AS CO3) 0	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 20	ALKA- LINITY LAB (MG/L AS CACO3)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 980	ACIDITY (MG/L AS H) 	ACIDITY (MG/L AS CACO3) 	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0	ALKA- LINITY LAB (MG/L AS CACO3)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 MAY	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 980 30	ACIDITY (MG/L AS H) .1	ACIDITY (MG/L AS CACO3) 5.0	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27	ALKA- LINITY LAB (MG/L AS CACO3)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 SEP	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 980 30 56	ACIDITY (MG/L AS H) .1 .1	ACIDITY (MG/L AS CACO3) 5.0 5.0	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0	ALKA- LINITY LAB (MG/L AS CACO3)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 MAY 07 SEP 10 OCT	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 980 30 56 	ACIDITY (MG/L AS H) .1 .1 .0	ACIDITY (MG/L AS CACO3) 5.0 5.0 .0	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0 	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34	ALKA- LINITY LAB (MG/L AS CACO3)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 NAY 07 SEP 10 OCT 27 NOV	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 38 38 30 56 248	ACIDITY (MG/L AS H) .1 .1 .0	ACIDITY (MG/L AS CACO3) 5.0 5.0 .0 .0	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19 19 97	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.1 2.4 3.0 9.5	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4 25	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0 4.2	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34	ALKA- LINITY LAB (MG/L AS CACO3)
DATE JULY, 1 12 AUG 0CT 16 APR, 1 09 OCT 10 SEP 10 OCT 27 NOV 05 DEC	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 980 30 56 248 233	ACIDITY (MG/L AS H) .1 .1 .0 .1	ACIDITY (MG/L AS CACO3) 5.0 5.0 .0 5.0	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19 19 97 84	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0 9.5 12	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4 25 23	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0 4.2 3.8	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34 	ALKA- LINITY LAB (MG/L AS CACO3) 34 27
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 OT. SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 980 30 56 248 233 981	ACIDITY (MG/L AS H) .1 .1 .1 .0 .1 .1	ACIDITY (MG/L AS CACO3) 5.0 5.0 0 .0 5.0 .0	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19 19 97 84 	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0 9.5 12 	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4 25 23 	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0 4.2 3.8	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34 13	ALKA- LINITY LAB (MG/L AS CACO3) 34 27
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 SEP 10 OCT 27 NOV 05 DEC 05 DEC 16 JAN, 1 15 FER	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 38 38 30 56 248 233 981 229	ACIDITY (MG/L AS H) .1 .1 .0 .0 .1 .0 .2	ACIDITY (MG/L AS CACO3) 5.0 5.0 .0 5.0 .0 .0 9.9	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19 19 19 97 84 81	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0 9.5 12 11	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4 25 23 7.0	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0 4.2 3.8 2.7	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34 13 	ALKA- LINITY LAB (MG/L AS CACO3) 34 27 19
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB 20 APR	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 38 38 30 56 248 233 981 229 80	ACIDITY (MG/L AS H) .1 .1 .0 .0 .2 .2	ACIDITY (MG/L AS CACO3) 5.0 5.0 .0 5.0 .0 9.9 	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19 19 97 84 81 29	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0 9.5 12 11 4.1	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4 25 23 7.0 4.6	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0 4.2 3.8 2.7 1.2	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34 13 	ALKA- LINITY LAB (MG/L AS CACO3) 34 27 19 9.0
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB 20 APR 09 MAY	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 980 30 56 248 233 981 229 80 335	ACIDITY (MG/L AS H) .1 .1 .0 .1 .0 .2 .2 .4	ACIDITY (MG/L AS CACO3) 5.0 5.0 0 5.0 .0 9.9 20	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19 19 97 84 81 29 120	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0 9.5 12 11 4.1 12	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4 25 23 7.0 4.6 5.7	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0 4.2 3.8 2.7 1.2 2.4	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34 13 	ALKA- LINITY LAB (MG/L AS CACO3) 34 27 19 9.0 15
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB 20 APR 09 MAY 14	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 38 30 56 248 233 981 229 80 335 260	ACIDITY (MG/L AS H) .1 .1 .0 .0 .2 .4 .4	ACIDITY (MG/L AS CACO3) 5.0 5.0 .0 5.0 .0 9.9 20 5.0	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19 19 19 97 84 81 29 120 94	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0 9.5 12 11 4.1 12 12	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4 25 23 7.0 4.6 5.7 8.3	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0 4.2 3.8 2.7 1.2 2.4 3.4	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34 13 13 	ALKA- LINITY LAB (MG/L AS CACO3) 34 27 19 9.0 15 25
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB 20 APR 09 MAY 14 JUS 27 SCT 27 NOV 05 FEB 20 APR 14 OCT 27 SCT 20 SCT 27 SCT 20 SCT 27 SCT SCT 27 SCT SCT SCT SCT SCT SCT SCT SCT SCT SCT	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 38 980 30 56 248 233 981 229 80 335 260 335	ACIDITY (MG/L AS H) .1 .1 .0 .2 .2 .4 .1 .2 .1	ACIDITY (MG/L AS CACO3) 5.0 5.0 .0 5.0 .0 9.9 20 5.0 9.9 5.0	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19 19 97 84 81 29 120 94 46 95	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0 9.5 12 11 4.1 12 12 12 5.7 12	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4 25 23 7.0 4.6 5.7 8.3 2.8 4.5	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0 4.2 3.8 2.7 1.2 2.4 3.4 1.5 2.6	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34 13 13 21 21	ALKA- LINITY LAB (MG/L AS CACO3) 34 27 19 9.0 15 25 19 16
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 VOY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB 20 APR 09 MAY 14 JUNE 26 30 AUG 12 SEP 26 SEP 27 NOV 05 FEB 20 APR 09 NAY 12 SEP 10 SEP	HARD- NESS, NONCAR- BONATE (MG/L CACO3) 979 82 80 380 30 56 248 233 981 229 80 335 260 118 271 506	ACIDITY (MG/L AS H) .1 .1 .0 .1 .0 .2 .4 .1 .2 .1 .3	ACIDITY (MG/L AS CACO3) 5.0 5.0 .0 .0 .0 9.9 20 5.0 9.9 5.0 9.9 5.0 15	CALCIUM DIS- SOLVED (MG/L AS CA) 36 35 13 19 19 19 97 84 81 29 120 94 46 95 170	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG) 4.7 4.1 2.1 2.4 3.0 9.5 12 11 4.1 12 12 5.7 12 20	SODIUM, DIS- SOLVED (MG/L AS NA) 1.0 .8 .5 4.6 3.4 25 23 7.0 4.6 5.7 8.3 2.8 4.5 6.8	POTAS- SIUM, DIS- SOLVED (MG/L AS K) 1.5 2.3 .9 1.2 1.0 4.2 3.8 2.7 1.2 2.4 3.4 1.5 2.6 3.7	BICAR- BONATE FET-FLD (MG/L AS HCO3) 34 31 	CAR- BONATE FET-FLD (MG/L AS CO3) 0 0 	ALKA- LINITY FIELD (MG/L AS CACO3) 28 25 3.0 27 4.0 34 13 21 21 	ALKA- LINITY LAB (MG/L AS CACO3) 34 27 19 9.0 15 25 19 16 2.0

SOUTH FORK SAND RUN NEAR WILSON, MARYLAND (01594934) (CONTINUED)

DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER DAY)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JULY, 1	.979	79	1 0	0 10	2 9	161	145	0 93		0 21	
AUG	2.2	0.2	1.5	0.10	5.0	101	145	0.85		0.21	
OCT	20	82	2.6	.10	4.3	157	148	1.1		.43	
16 APR, 1	980	40	1.2	.10	4.3	69	65			.61	
09 MAY	10	43	1.2	.10	3.1	103	91	5.3			.61
07 SEP	6.2	53	1.3	.10	4.3	98	88	.71			.55
10 OCT		280				478		1.2			
27	5.2	290	3.5	.10	3.6	517	456	2.5	37	.39	.38
05	6.6	250	2.9	.10	4.7	464	400	.60	17	.45	.44
16	25	140				224		1.1			
15	12	250	3.0	.20	5.3	395	373	.10	6	.53	.39
FEB 20	2.8	73	2.6	<.10	3.7	145	124	4.7	51	.94	.92
APR 09	15	270	3.0	.20	4.6	412	428	3.1	20	.34	
MAY 14	19	260	4.1	.20	4.5	459	402	.90	5	.39	.38
JUNE 26	6.4	81	4.9	.10	4.6	214	160	3.0	51	.46	.48
30 AUG	7.8	270	2.1	.20	5.0	446	402	4.1	5	.49	.38
12	3.9	470	2.2	.30	7.5	781	683	.32	5	.20	.21
17	.0	320	2.8	.20	5.4	537	472	5.1	11	.24	.33
DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY,	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 12 AUG	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 12 AUG 14 OCT	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 12 AUG 14 OCT 16 APR.	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30	ARSENIC TOTAL (UG/L AS AS) 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N) 	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30	ARSENIC TOTAL (UG/L AS AS) 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 CEP	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N) 	NITRO- GEN DIS- SOLVED (MG/L AS N) 	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 	ARSENIC TOTAL (UG/L AS AS) 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 12 AUG 14 OCT 05 MAY 07 SEP 10 OCF	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) 	NITRO- GEN, TOTAL (MG/L AS N) 	NITRO- GEN DIS- SOLVED (MG/L AS N) 	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 	ARSENIC TOTAL (UG/L AS AS) 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 12 AUG 04 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 .34	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16	NITRO- GEN, TOTAL (MG/L AS N) .73	NITRO- GEN DIS- SOLVED (MG/L AS N) .54	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 .010 .030	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 300	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50	ARSENIC TOTAL (UG/L AS AS) 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 .34 .08	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16 .06	NITRO- GEN, TOTAL (MG/L AS N) .73 .53	NITRO- GEN DIS- SOLVED (MG/L AS N) .54 .50	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 300	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50	ARSENIC TOTAL (UG/L AS AS) 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0 0	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 1980 .34 .08	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16 .06	NITRO- GEN, TOTAL (MG/L AS N) .73 .53	NITRO- GEN DIS- SOLVED (MG/L AS N) .54 .50	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 .030 .020	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 300	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 	ARSENIC TOTAL (UG/L AS AS) 1 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0 0	BARIUM, TOTAL RECOV- ERABL (UG/L AS BA) 100
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 .34 .08 .1981 .13	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16 .06 <.10	NITRO- GEN, TOTAL (MG/L AS N) .73 .53 .66	NITRO- GEN DIS- SOLVED (MG/L AS N) .54 .50 	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 .030 .020 .020 .020 .020 .020	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 300 300	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 50 	ARSENIC TOTAL (UG/L AS AS) 1 1 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1 1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0 0 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100
DATE JULY, 12 AUG 04 OCT 16 APR, 09 SEP 10 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 .34 .08 .1981 .13 .28	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16 .06 <.10 .23	NITRO- GEN, TOTAL (MG/L AS N) .73 .53 .66 1.2	NITRO- GEN DIS- SOLVED (MG/L AS N) .54 .50 1.2	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 .030 .020 .020 <.010 .050	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 300 200	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 50 50	ARSENIC TOTAL (UG/L AS AS) 1 1 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0 0 0	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 .34 .08 1981 .13 .28 .16	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16 .06 <.10 .23 .04	NITRO- GEN, TOTAL (MG/L AS N) .73 .53 .66 1.2 .50	NITRO- GEN DIS- SOLVED (MG/L AS N) .54 .50 1.2 .50	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 .010 .010 .030 .020 .030 .020 .010 .050 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 3000 2000 500	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 0 100	ARSENIC TOTAL (UG/L AS AS) 1 1 1 0	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1 1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0 0 0	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR 09 MAY	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 1980 .34 .08 .13 .28 .16	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16 .06 <.10 .23 .04	NITRO- GEN, TOTAL (MG/L AS N) .73 .53 .53 .66 1.2 .50	NITRO- GEN DIS- SOLVED (MG/L AS N) .54 .50 1.2 .50 .80	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 .030 .020 .020 .020 .010 .050 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 3000 2000 500	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 0 100	ARSENIC TOTAL (UG/L AS AS) 1 1 1 0	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1 1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0 0 0 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR 09 APR 14 UCT 27 JULY, 15 FEB 20 APR 09 APR 00 APR 0 APR 0 APR 0 APR 0 APR 0 APR 0 A	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 1980 334 .08 .13 .28 .16 .39	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16 .06 (.10 .23 .04 .42	NITRO- GEN, TOTAL (MG/L AS N) .73 .53 .66 1.2 .50 .78	NITRO- GEN DIS- SOLVED (MG/L AS N) .54 .50 1.2 .50 .80	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 .010 .020 .030 .020 .030 .020 .050 <.010 .050 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 300 200 500	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 0 100 	ARSENIC TOTAL (UG/L AS AS) 1 1 1 0 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1 1 1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0 0 0 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR 09 MAY 14 SUC 15 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 NOV 05 FEB 20 APR 09 APR 09 NOV 05 FEB 20 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 00 APR 09 APR 00 APR 0 APR 0 APR 0 APR 0 APR 0 APR 0 APR 0 APR 0 APR A	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 .34 .08 1981 .13 .28 .16 .39 .28 .29	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16 .06 <.10 .23 .04 .42 .32 .32	NITRO- GEN, TOTAL (MG/L AS N) .73 .53 .66 1.2 .50 .78 .74 .78	NITRO- GEN DIS- SOLVED (MG/L AS N) .54 .50 1.2 .50 .80 .80 .70	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 .030 .020 .020 .020 .020 .020 .020 .020	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 300 200 500 	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 0 100 	ARSENIC TOTAL (UG/L AS AS) 1 1 1 0 1 1 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1 1 1 1 1 1 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0 0 0 0 0 0 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100 100
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR 09 MAY 14 JUNEY 14 JUNEY 14 JUNEY 14 AUG 12	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 1979 1980 .34 .08 .13 .28 .13 .28 .16 .39 .28 .29 .43	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .16 .06 <.10 .23 .04 .42 .32 .32 .15	NITRO- GEN, TOTAL (MG/L AS N) .73 .53 .66 1.2 .50 .78 .74 .78 .63	NITRO- GEN DIS- SOLVED (MG/L AS N) .54 .50 1.2 .50 .80 .70 .36	PHOS- PHORUS, TOTAL (MG/L AS P) 0.010 .020 .010 .030 .020 .020 .020 .020 .010 .050 <.010 .070 .040 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 300 200 500 500	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 0 100 100	ARSENIC TOTAL (UG/L AS AS) 1 1 1 0 1 1 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 1 1 1 1 1 1 1 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) 0 0 0 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100 100

SOUTH FORK SAND RUN NEAR WILSON, MARYLAND (01594934) (CONTINUED)

DATE	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, DIS- SOLVED (UG/L AS CO)
JULY, 1 12	1979 60	2				3			<2		2
AUG 14	60	<10				2					3
ОСТ 16											
APR, I	1980										
MAY 07											
SEP 10							<10			70	
ОСТ 27	100		4	2	0	2		10	10		
NOV 05											
DEC											
JAN, 1	1981 80		10	10	0	1		10	1.0		
FEB 20											
APR 09	70		20	20	0	2	<u></u>	<10	<10		
MAY 14											
JUNE 26											
30											
12											
17	100		10	<10	10	2		20	10		
DATE	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)
DATE JULY, 1	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)
DATE JULY, 1 12 AUG	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) ND	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420	IRON, DIS- SOLVED (UG/L AS FE) 30 700	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB) 6	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) 1
DATE JULY, 1 12 AUG 14 OCT 16	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) ND 4	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 780	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 16 APR, 09	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) ND 4	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 780 9000	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 780 9000 600	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 30	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 780 9000 600 920	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 09 MAY 07 SEP 10 OCT 27	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 30	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 780 9000 600 920 1500	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0 30	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 16 APR, 09 SEP 10 SEP 10 OCT 27 NOV 05	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 300 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 780 9000 600 920 1500 1100	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0 30 90	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10 	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 30 30 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 10	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2 2	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 780 9000 600 920 1500 1100 570	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0 30 90 60	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10 <10	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 16 APR, 09 NOY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 30 30 1981	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 10 10	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2 2 0	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 780 9000 600 920 1500 1100 570 580	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0 30 90 60 330	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0 0	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0 0 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10 <10	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 06 APR, 09 SEP 10 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 300 300 1981 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 10 10 10	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2 2 0	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 780 9000 600 920 1500 1100 570 580 2500	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0 30 90 60 330 20	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600 3600	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0 0 0	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0 0 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10 <10	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG OCT 16 APR, 09 NAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR 9	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 30 30 1981 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 10 10 10 2	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2 2 0 6	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 <10	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 9000 600 920 1500 1100 570 580 2500 650	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0 30 90 60 330 20 30	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600 3600	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0 0 0 5	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0 0 0 0 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10 <10 	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 16 APR, 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR 09 MAY 14	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 30 1981 1981 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 10 10 10 2	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2 2 0 6	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 <10 	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 9000 600 920 1500 1100 570 580 2500 650 390	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0 30 90 60 330 20 30 <10	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0 0 5 	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0 0 0 0 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10 <10 <10	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 16 APR, 07 SEP 10 SEP 10 CCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR 09 MAY 09 MAY 14 JAL	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 1980 300 300 1981 1981 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 10 10 10 2 	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2 2 0 6 6	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 -	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 9000 600 920 1500 1100 570 580 2500 650 390 2200	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0 30 90 60 330 20 30 <10 <10	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600 3600	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0 0 5 5	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0 0 0 0 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10 <10 -	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4 -
DATE JULY, 12 AUG 14 OCT 0CT 16 APR, 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR, 09 JAN, 15 FEB 20 APR, 14 JUA 20 APR, 30 APR, 05 JAN, 15 APR, 05 JAN, 15 APR, 05 JAN, 15 JAN, 15 APR, 05 JAN, 15 JAN, 16 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, 15 JAN, JAN, JAN, JAN, JAN, JAN, JAN, JAN,	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 30 1980 1981 1981 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 10 10 10 2 10	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2 2 0 6 6 	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 -	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 9000 600 920 1500 1100 570 580 2500 650 390 2200 490	IRON, DIS- SOLVED (UG/L AS FE) 30 700 400 40 10 0 30 90 60 330 20 30 <10 <10	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600 3600 3600	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0 0 0 5 5	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0 0 0 0 0 0 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10 -	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4
DATE JULY, 12 AUG 14 OCT 16 APR, 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 20 APR 09 MAY 14 JULY 26 SEP	COBALT, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CO) 1979 1980 30 1981 1981 1981 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 10 10 10 2 10	COPPER, DIS- SOLVED (UG/L AS CU) ND 4 2 2 0 6 6	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 <10 -	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 420 1500 9000 600 920 1500 1100 570 580 2500 650 390 2200 490	IRON, DIS- SOLVED (UG/L AS FE) 30 400 40 10 0 30 90 60 330 20 30 <10 <10 <10 120	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3600 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) 0 0 5 5	LEAD, DIS- SOLVED (UG/L AS PB) 6 ND 0 0 0 0 0 0	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) <10 <10 -	LITHIUM DIS- SOLVED (UG/L AS LI) 1 4

SOUTH FORK SAND RUN NEAR WILSON, MARYLAND (01594934) (CONTINUED)

DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)
JULY, 19	79										
12	60	40			<0.5		1		4		<1
AUG									-		
14	290	270			<.5		<1		5		<1
UCT 16	620	620									
APR. 19	80	020									
09	490	340									
MAY											
07	550	540									
SEP	100	190	E 9.0		_	0.0					
000	490	400	580			.00					
27	790	670		<.1	<.1			18	12	1	1
NOV											
05	780	860									
DEC	C 1 0										
16	640	570									
JAN, 19	720	820		< 1	C 1			32	35	1	1
FEB	720	020		(.1				52	55	1	-
20	440	430									
APR								5.0			
09	760	890		<.1	<.1			52	54	1	1
MAY	640	650									
TUNE	040	050									
26	490	490									
30	590	660									
AUG											
12	1100	1300									
SEP 17	2100	2400		2 1	2.1			140	100	1	1
1/	2100	2400		· • 1	`. 1			T40	100	T	Т

DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G) (01148)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG) (01077)	SILVER, DIS- SOLVED (UG/L AS AG) (01075)	STRON- TIUM, DIS- SOLVED (UG/L AS SR) (01080)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN) (01092)	ZINC, DIS- SOLVED (UG/L AS ZN) (01090)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN) (01093)	CARBON, ORGANIC TOTAL (MG/L AS C) (00680)	CYANIDE TOTAL (MG/L AS CN) (00720)	PHENOLS TOTAL (UG/L) (32730)
JULY, 12	1979		<2	140		20				
AUG 14				140		30				
16										
09								6.2		
07										
10	0						70			
27		0	0		10	9				
05								3.4	.00	4
16										
15	1981	0	0		60	30				
20								2.5	<.01	0
09		0	0		140	120		2.4		
14								2.0	<.01	0
26								5.7		
AUG									<.01	<1
SEP			<1		320	300		- 8		
1/		1	11		520	500				

NORTH FORK SAND RUN AT MOON RIDGE, MARYLAND (01594935)

DATE	5	CIME	STRI FLO INS TANI (CI	SPI EAM- CII DW, COI FAN- DUC EOUS ANC FS) (UM	8- FIC N- CT- CE HOS) F	PH IELD	LAB	TEMI ATU AI (DEC	PER- JRE, IR G C)	TEMI ATU (DEG	PER- IRE ; C)	OXYG DI SOL (MG	EN, S- VED (/L)	HARD- NESS (MG/L AS CACO3	HA NE NON BON (M	RD- SS, CAR- ATE G/L CO3)	ACII (MC AS	DITY G/L H)	ACIDITY (MG/L · AS CACO3)
SEP, 10	1980	0845				6.8		1	11.0	1	5.2		9.5		_				
NOV 05	1	1240		.32	122	3.9	4.2		6.0		6.7	1	1.0	3	5	36		.3	15
FEB, 18	1981	1600	3	9.5	83	3.5	4.2		10.0		1.8		8.8	2	9	29		.5	25
MAY 15	. :	1045	:	2.5	92	3.4	4.4		17.0	1	5.6		9.2	2	5	25		.3	15
JUNE 30		1345	t	1.3	56		5.6		24.0	j	9.6		7.0	-	-				
AUG 12	. 3	1220		.35	46	6.5	6.2			1	20.2			2	4	22			
I	DATE	CAI D: SC (N AS	LCIUM IS- DLVED MG/L S CA)	MAGNE- SIUM, DIS- SOLVED (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS SIUM DIS- SOLVE (MG/L AS K)	- AL , LIN L D (M A CA	KA- ITY AB G/L S CO3)	CAR DIOX DI SOL (MG AS C	BON IDE S- VED /L O2)	SULF DIS SOL (MG AS S	ATE 	CHLO- RIDE DIS- SOLV (MG/ AS C	- F , R ED S L (L) A	LUO- IDE, DIS- OLVED MG/L S F)	SILIO DIS SOL (MG, AS SIO	CA, VED /L 2)	SOLII RESII AT 18 DEG. DIS SOLV (MG,	DS, DUE 10 C S- VED (L)
SI	EP,	1980				_	-				28	0						4	178
NO	DV 05		9.4	3.1	.5	1.	4	.0		.0	4	5	2	.6	.20		5.6		83
FI	EB, 18	1981	7.3	2.5	.4		8	.0		.0	3	6	1	.2	<.10		4.9		62
M	AY 15		6.6	2.0	.5	2	7	.0		.0	3	3		.8	<.10	a a	4.1		62
J	UNE 30					-	_	1.0			2	:6	1	.0	<.10				50
A	UG 12		6.4	1.9	.9		5	2.0		1.2	2	1		.7	<.10		4.4		47
1	DATE	SOI SUI COI TUI I SO (1	LIDS, M OF NSTI- ENTS, DIS- DLVED MG/L)	SOLIDS, DIS- SOLVED (TONS PER DAY)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	SOLIDS VOLA- TILE, DIS- SOLVED (MG/L	NI G NO2 D SO (M S) AS	TRO- EN, +NO3 IS- LVED G/L N)	ARSE TOT IN B TOM TER (UG AS	AL AL MA- MA- IAL (G AS)	CADM REC FM B TOM TEF (UG AS	NIUM COV. BOT- MA- RIAL G/G CD)	CHRO MIUM RECO FM BO TOM M TERI (UG/	- CO , R V. FM T- TO A- T AL (G) A	BALT, ECOV. BOT- M MA- ERIAL UG/G S CO)	COPP REC FM B TOM TER (UG AS	ER, OV. OT- MA- IAL /G CU)	IROI TOTA RECO ERAI (UG, AS 1	N, AL DV- BLE (L FE)
S	EP, 10	1980				-	_			<1		<10		70	30		<10		920
N	0V 05		71	.07	5	1	.5	.31											
F	EB, 18	1981	54	1.6	<1		6	.98											
M.	AY 15		49	.42	21	2	:7	.38											
0	30			.18	42		9	.31											
A	12		38	.04	36	1	.8	.11											
	DATE	2	IRON, DIS- SOLVED (UG/L AS FE)	IRON RECC FM BOT- TOM MA- TERIAL (UG/G AS FE)	V. LEA V. RECC FM BOT TOM MA TERIA (UG/G AS PB	D, MA DV. NE - TOTA - RECC L ERAB (UG/) AS M	ANGA- SSE, AL OV- SLE 'L MN)	MA NESE DIS SOLV (UG/ AS M	NGA- , F ED I L N)	MA NE RECO M BO COM M TERI (UG/	NGA- SE, V. H T- J A- AL G)	MER RE TM BO TOM M TERI (UG/ AS H	CURY COV. T- T A- IN AL TO G T G) (SELE- NIUM, OTAL BOT- M MA- PERIAL UG/G)	Z I RH FM BC TOM M TERJ (UG/ AS 2	INC, SCOV. DT- 4A- IAL 'G ZN)			
S	EP, 10	1980	<10	3600	<1	0 4	90	4	80	5	80	<0.	01	<1		70			

10	VI0	3000	<10	490	480	280	<0.01	<1	
NOV									
05	1600				1300				
FEB, 1981									
18	690				650				
MAY									
15	530				600				
JUNE									
30									
AUG									
12	490				640				

77

NORTH FORK SAND RUN NEAR WILSON, MARYLAND (01594936)

DATE	TIME	STREAM- FLOW, INSTAN- TANEOUS (CFS)	SPE- CIFIC CON- DUCT- ANCE (UMHOS)	FIELD	PH LAB	TEMPER- ATURE, AIR (DEG C)	TEMPER- ATURE (DEG C)	COLOR (PLAT- INUM- COBALT UNITS)	TUR- BID- ITY (NTU)	OXYGEN, DIS- SOLVED (MG/L)	HARD- NESS (MG/L AS CACO3)
JULY, 197	79										
12 AUG	1000	0.60	220	6.9	6.5		17.5	3			95
14	1030	1.4	154	6.1	6.4		17.0	5			53
16	1030		88	4.8			9.0	<1			27
APR, 198	30										
09 MAY	1230	24	53	5.0		17.0	9.5			9.4	21
07	1015	4.0	78	4.9		15.5	10.5			8.8	33
10 OCT	1030	1.2		6.0		14.0	15.9			8.3	
27	1100	1.3	178	6.2	6.4	11.0	3.1		1.0	11.0	77
05 DEC	1050	1.2	185	6.3	6.7		6.1		.75		80
16	1100	3.5	87	5.1	6.0	.0	2.5			12.0	
15 FEB	1300	1.2	547	5.0	5.0	-3.0	.0		3.7	12.6	230
18	1300	16	86	4.4	4.7	15.0	3.3		3.5	12.5	36
09	1330	3.1	192	3.8	4.5	11.0	10.3		2.0	9.7	74
15	1145	5.5	139	4.3	6.0	16.0	13.0		2.1	9.6	55
26	1445	5 7	186	4 4	3 9	21 0	18 5		8 6	8 8	70
30	0945	3.3	133	5.1	4.8	24.1	15.5		2.7	8.1	51
AUG											
12	1225	.80	165	6.0	6.9		19.1		6.0		78
17	1500	3.1	98	6.2	6.9	15.0	15.0		6.3	7.9	35

DATTE	HARD- NESS, NONCAR- BONATE (MG/L	ACIDITY (MG/L	ACIDITY (MG/L AS	CALCIUM DIS- SOLVED (MG/L	MAGNE- SIUM, DIS- SOLVED (MG/L AS_MG)	SODIUM, DIS- SOLVED (MG/L	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	BICAR- BONATE FET-FLD (MG/L AS HCO3)	CAR- BONATE FET-FLD (MG/L AS CO3)	ALKA- LINITY FIELD (MG/L AS	ALKA- LINITY LAB (MG/L AS CACO3)
DATE	CRC05)	NO III	cheos)	no en)	no no,	no nnj	ND N/	neosy	110 0007	0110057	011005)
JULY, 1	979										
12	87			27	6.7	0.8	0.8	10	0	8.0	
AUG									0	5 0	
14	48			15	3.8	. 6	1.0	6	0	5.0	
UCT 16	26			7 5	2 1	5	6			1.0	
APR 1	980			7.5	2.1		.0			1.0	
09	20	1	5.0	5.4	1.8	. 4	. 8			1.0	
MAY	20	• 1	5.0	5	1.0	• •					
07	32	.1	5.0	9.0	2.5	.6	.6			1.0	
SEP											
10		.0	.0							13-	
OCT											
27	65	.1	5.0	22	5.3	.6	1.9				12
NOV			5 0		C O	0					14
05	66	.1	5.0	22	6.0	.8	1.4				14
DEC		0	0							3 3	
10	0.01	.0	.0							5.5	
15	231	1.2	60	68	15	1.4	2.1				1.0
FEB	201	1.12	00	00	10						
18	36	.3	15	9.8	2.7	.6	.8				.0
APR											
09	74	.7	35	21	5.3	.6	1.1				.0
MAY											
15	54	.1	5.0	16	3.7	.8	.9				1.0
JUNE										2.0	0
26	68	.3	15	20	4.9	. 6	1.0			2.0	.0
30	48	•1	5.0	17	2.0	.0	.0				5.0
12	61	3	15	22	5 5	1.1	. 9				17
SED.	01	• 5	1.5	66	5.5	1.1	.,				
17	27	.1	5.0	11	1.9	.6	.9			8.0	7.0

NORTH FORK SAND RUN NEAR WILSON, MARYLAND (01594936) (CONTINUED)

DATE	CARBON DIOXIDE DIS- SOLVED (MG/L AS CO2)	SULFATE DIS- SOLVED (MG/L AS SO4)	CHLO- RIDE, DIS- SOLVED (MG/L AS CL)	FLUO- RIDE, DIS- SOLVED (MG/L AS F)	SILICA, DIS- SOLVED (MG/L AS SIO2)	SOLIDS, RESIDUE AT 180 DEG. C DIS- SOLVED (MG/L)	SOLIDS, SUM OF CONSTI- TUENTS, DIS- SOLVED (MG/L)	SOLIDS, DIS- SOLVED (TONS PER DAY)	SOLIDS, RESIDUE AT 105 DEG. C, SUS- PENDED (MG/L)	NITRO- GEN, NO2+NO3 TOTAL (MG/L AS N)	NITRO- GEN, NO2+NO3 DIS- SOLVED (MG/L AS N)
JULY, 1	979										
AUG	2.0	88	1.6	0.10	4.8	155	136	0.25		0.14	
14 OCT	7.6	50	.7	.10	5.0	91	80	.34		.33	
16 APR, 1	31 980	29	1.1	.10	4.6	50	47			.61	
09 MAY	19	20	.7	<.10	3.6	50	34	3.2			.71
07 SEP	24	32	.9	.10	4.1	58	51	.63			.58
10 ОСТ		48				104		.34			
27 NOV	15	66	3.7	<.10	4.6	143	115	.50	4	.32	.32
05	14	68	2.0	.20	4.8	128	116	.41	1	.37	.37
16	50	34				52		.49			
15	19	220	1.3	.10	7.9	390	331	1.3	31	.48	.52
18	.0	35	1.3	<.10	4.5	64	56	2.8	9	.99	.97
09	.0	82	1.7	<.10	5.2	136	119	1.1	14	.63	.62
15	97	55	1.2	<.10	4.0	93	83	1.4	9	.46	.45
26 30	154	70 54	1.1	<.10	4.7	141	108	2.2	16	.39	.41
AUG 12	33	62	.9	<.10	4.8	125	109	.27	7	.23	.20
SEP 17	9.8	32	1.6	<.10	4.0	83	58	.69	12	.40	.37
DATE	NITRO- GEN,AM- MONIA + ORGANIC TOTAL (MG/L AS N)	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 1	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P)	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL)	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS)	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 1 12 AUG	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS) <1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 1 12 AUG 14 OCT	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30	ARSENIC TOTAL (UG/L AS AS)	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N) 	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 	ARSENIC TOTAL (UG/L AS AS) 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 MAY	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N)	NITRO- GEN, TOTAL (MG/L AS N) 	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 	ARSENIC TOTAL (UG/L AS AS) 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 NAY 07 SEP	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) 	NITRO- GEN, TOTAL (MG/L AS N) 	NITRO- GEN DIS- SOLVED (MG/L AS N) 	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 	ARSENIC TOTAL (UG/L AS AS) 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS)	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 NAY 07 SEP 10 OCT	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 980	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) 	NITRO- GEN, TOTAL (MG/L AS N)	NITRO- GEN DIS- SOLVED (MG/L AS N)	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 <.010 	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 	ARSENIC TOTAL (UG/L AS AS) 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 	ARSENIC TOTAL IN BOT TOM MA- TERIAL (UG/G AS AS) <1	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 MAY 07 SEP 10 OCT 27 NOV	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 .32	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .29	NITRO- GEN, TOTAL (MG/L AS N) .64	NITRO- GEN DIS- SOLVED (MG/L AS N) .61	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 <.010 .010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 100	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50	ARSENIC TOTAL (UG/L AS AS) <1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) <1 <1	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 NAY 07 SEP 10 OCT 27 NOV 05 DEC	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 .32 .09	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .29 <.10	NITRO- GEN, TOTAL (MG/L AS N) .64 .46	NITRO- GEN DIS- SOLVED (MG/L AS N) .61 .37	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 <.010 .010 .010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50	ARSENIC TOTAL (UG/L AS AS) <1 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1 <1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) <1 <1	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100
DATE JULY, 1 12 AUG OCT 16 APR, 1 09 OCT 27 NOV 05 DEC 16 JAN, 1	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 980 .32 .09 981	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) .29 <.10	NITRO- GEN, TOTAL (MG/L AS N) .64 .46	NITRO- GEN DIS- SOLVED (MG/L AS N) .61 .37 	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 <.010 .010 .010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 	ARSENIC TOTAL (UG/L AS AS) <1 <1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1 <1 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) <1 <1 <1	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA)
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 O7 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 980 .32 .09 981 .38	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) .29 <.10 .22	NITRO- GEN, TOTAL (MG/L AS N) .64 .46 .86	NITRO- GEN DIS- SOLVED (MG/L AS N) .61 .37 .74	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 .010 .010 .010 (.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 100	ARSENIC TOTAL (UG/L AS AS) <1 <1 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1 <1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) <1 <1 <1 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 NAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB 18 APR	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 980 .32 .09 981 .38 .28	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .29 <.10 .22 .16	NITRO- GEN, TOTAL (MG/L AS N) .64 .46 .86 1.3	NITRO- GEN DIS- SOLVED (MG/L AS N) .61 .37 .74 1.1	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 .010 .010 .010 <.010 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 100 100 300	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 100	ARSENIC TOTAL (UG/L AS AS) <1 <1 1 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1 <1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) <1 <1 <1 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 07 SEP 10 OCT 27 NOV 27 DEC 16 JAN, 1 15 FEB 18 APR 09 MAY	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 .32 .09 .32 .09 981 .38 .28 .16	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .29 <.10 .22 .16 .10	NITRO- GEN, TOTAL (MG/L AS N) .64 .46 .86 1.3 .79	NITRO- GEN DIS- SOLVED (MG/L AS N) .61 .37 .74 1.1 .72	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 .010 .010 .010 .010 <.010 <.010 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 100 300 800	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 100 800	ARSENIC TOTAL (UG/L AS AS) <1 1 1 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) <1 <1 <1 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100
DATE JULY, 1 12 AUG OCT 16 APR, 1 09 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB 18 APR 09 MAY 15 JUNE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 980 .32 .09 981 .38 .28 .16 .49	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) .29 <.10 .22 .16 .10 .48	NITRO- GEN, TOTAL (MG/L AS N) .64 .46 .86 1.3 .79 .95	NITRO- GEN DIS- SOLVED (MG/L AS N) .61 .37 .74 1.1 .72 .93	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 .010 .010 .010 <.010 <.010 <.010 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)) 100 300 800	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 50 100 800	ARSENIC TOTAL (UG/L AS AS) <1 <1 1 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1 1 1 1	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) <1 <1 <1 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 09 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB 18 APR 15 JUNE 26 30	NITRO- GEN, AM- MONIA + ORGANIC TOTAL AS N) 979 980 980 .32 .09 981 .38 .28 .16 .49 .31	NITRO- GEN,AM- MONIA + ORGANIC DIS. (MG/L AS N) .29 <.10 .22 .16 .10 .48 .21	NITRO- GEN, TOTAL (MG/L AS N) .64 .46 .86 1.3 .79 .95 .70	NITRO- GEN DIS- SOLVED (MG/L AS N) .61 .37 .74 1.1 .72 .93 .62 278	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 .010 .010 .010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 100 300 800 	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 100 800 	ARSENIC TOTAL (UG/L AS AS) <1 1 1 1 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1 (1 1 1 1 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) <1 <1 <1 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100
DATE JULY, 1 12 AUG 14 OCT 16 APR, 1 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 1 15 FEB 18 APR 09 MAY 15 JUNE 26 30 JUNE 26 30 JUNE 26 JUNE 27 JUNE 26 JUNE 27 JUNE 27 JUNE 27 JUNE 27 JUNE 26 JUNE 27 JUNE 27 JUNE 27 JUNE 27 JUNE 26 JUNE 27 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE 26 JUNE	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 .32 .09 981 .38 .28 .16 .49 .31 .39	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .29 <.10 .22 .16 .10 .48 .21 .33 	NITRO- GEN, TOTAL (MG/L AS N) .64 .46 .86 1.3 .79 .95 .70 .89	NITRO- GEN DIS- SOLVED (MG/L AS N) .61 .37 .74 1.1 .72 .93 .62 .78	PHOS- PHORUS, TOTAL (MG/L AS P) <0.010 <.010 .010 .010 .010 <.010 <.010 <.010 <.010 <.010 <.010 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL) 100 300 800 	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 100 800 	ARSENIC TOTAL (UG/L AS AS) <1 <1 1 1 1	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1 1 1 1 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) <1 <1 <1 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100 100
DATE JULLY, 1 12 AUG 14 OCT 16 APR, 1 07 SEP 10 OCT 27 NOV 27 PEC 16 JAN, 1 15 FEB 18 APR 09 MAY 15 JUNE 26 APR 09 AJR 12 30 30 AUR 27 SEP 10 SEP 11 SEP 11 SEP 11 SEP 11 SEP 11 SEP 11 SEP 11 SEP 11 SEP 11 SEP 11 SEP 11 SEP 11 SEP 12 SEP SEP 12.	NITRO- GEN, AM- MONIA + ORGANIC TOTAL (MG/L AS N) 979 980 .32 .09 .32 .09 .32 .09 .32 .28 .16 .49 .31 .39 .44	NITRO- GEN, AM- MONIA + ORGANIC DIS. (MG/L AS N) .29 <.10 .22 .16 .10 .48 .21 .33 .19	NITRO- GEN, TOTAL (MG/L AS N) .64 .46 .86 1.3 .79 .95 .70 .89 .70	NITRO- GEN DIS- SOLVED (MG/L AS N) .61 .37 .74 1.1 .72 .93 .62 .78 .39	PHOS- PHORUS, TOTAL AS P) <0.010 <.010 <.010 .010 .010 .010 <.010 <.010 <.010 <.010 <.010 <.010 .020 <.010	ALUM- INUM, TOTAL RECOV- ERABLE (UG/L AS AL)) 100 300 800 800 	ALUM- INUM, DIS- SOLVED (UG/L AS AL) 30 50 100 8000 8000	ARSENIC TOTAL (UG/L AS AS) <1 1 1 1 1 	ARSENIC DIS- SOLVED (UG/L AS AS) <1 3 <1 1 1 1 1 1 	ARSENIC TOTAL IN BOT- TOM MA- TERIAL (UG/G AS AS) (1 (1 (1 (1 	BARIUM, TOTAL RECOV- ERABLE (UG/L AS BA) 100 100 100 100 100

NORTH FORK SAND RUN NEAR WILSON, MARYLAND (01594936) (CONTINUED)

DATE	BARIUM, DIS- SOLVED (UG/L AS BA)	BERYL- LIUM, DIS- SOLVED (UG/L AS BE)	BORON, TOTAL RECOV- ERABLE (UG/L AS B)	BORON, DIS- SOLVED (UG/L AS B)	CADMIUM TOTAL RECOV- ERABLE (UG/L AS CD)	CADMIUM DIS- SOLVED (UG/L AS CD)	CADMIUM RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CD)	CHRO- MIUM, TOTAL RECOV- ERABLE (UG/L AS CR)	CHRO- MIUM, DIS- SOLVED (UG/L AS CR)	CHRO- MIUM, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	COBALT, DIS- SOLVED (UG/L AS CO)
JULY, 1	1979 50	4				<2			<2		4
AUG	70	<10				<2					7
OCT											
APR, 1	980										
MAY											
SEP							(10			20	
OCT							(10		(10	50	
NOV	60		2	<10	<10	4		20	<10		
05 DEC											
16 JAN,	1981										
15 FEB	80		10	10	<10	5		10	10		
18 APR											
09 MAY	60)	10	10	<10	2		<10	<10		
15 JUNE											
26											
AUG											
SEP 17	100)	20	10	<10	1		10	10		
DATE	COBALT RECOV FM BOT TOM MA- TERIAI (UG/G AS CO)	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)
DATE JULY,	COBALT RECOV FM BOT- TOM MA- TERIAI (UG/G AS CO) 1979	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE)	IRON, DIS- SOLVED (UG/L AS FE)	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB)	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI)
DATE JULY, 12 AUG	COBALT RECOV FM BOT TOM MA- TERIAI (UG/G AS CO) 1979	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU)	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870	IRON, DIS- SOLVED (UG/L AS FE) 110	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB) 5	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) 3
DATE JULY, 12 AUG 14 OCT	COBALT RECOV FM BOT TOM MA- TERIAI (UG/G AS CO) 1979	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) <1 3	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910	IRON, DIS- SOLVED (UG/L AS FE) 110 240	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB) 5	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 16 APR,	COBALT RECOV FM BOT- TOM MA- TERIA (UG/G AS CO) 1979 1980	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) <1 3	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250	IRON, RECOV. FM BOT- TORM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 16 APR, 09 NAY	COBALT RECOV FM BOT- TOM MA- TERIA (UG/G AS CO) 1979 1980	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500	IRON, DIS- SOLVED (UG/L AS FE) 1110 240 250 220	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 16 APR, 09 SEP	COBALT, RECOV FM BOT- TOM MA- TERIAI (UG/G AS CO) 1979 1980 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU)	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE)	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB)	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT	COBALT RECOV FM BOT- TOM MA- TERIA (UG/G AS CO) 1979 1980 <10	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU)	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350	IRON, RECOV. FM BOT- TORMAL (UG/G AS FE) 3400	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB)	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 16 APR, 07 SEP 10 OCT 27 NOV	COBALT RECOV FM BOT- TOM MA- TERIA (UG/G AS CO) 1979 1980 <11 <11	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 4	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300 1100	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350 640	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3400	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <1	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 <1	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 16 APR, 07 SEP 10 OCT 27 NOV 05 DEC	COBALT RECOV FM BOT TOM MA- TERIAI (UG/G AS CO) 1979 1980 <10 <10 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 4	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300 1100 430	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350 640 180	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3400 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <1	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 <1 	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 07 SEP 10 OCT 07 NOV 05 DEC 16 JAN,	COBALT, RECOV FM BOT- TOM MA- TERIAI (UG/G AS CO) 1979 1980 <10 <10 <10 <10 <10 <10 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 4 4 	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300 1300 1100 430	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350 640 180 370	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3400 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <1	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 <1 <1	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10 10 	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB	COBALT RECOV FM BOT- TOM MA- TERING (UG/G AS CO) 1979 1980 <1(<1(<1(<1(COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 4 4 1	COPPER, RECOV. FM BOT- TOR MA- TERIAL (UG/G AS CU) <10 <10 -	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300 1100 430 520 10000	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350 640 180 370 12000	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3400 3400	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <1 <1 <1	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 <1 <1 <1	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10 10 	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 16 APR, 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 18 APR	COBALT RECOV FM BOT TOM MA- TERIA (UG/G AS CO) 1979 1980 <11 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 4 4 1 1	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 -	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300 1100 430 520 10000 1400	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350 640 180 370 12000 750	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3400 3400	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <1 <1 <1 <1	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 <1 <1 <1 <1	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10 10 10	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5 -
DATE JULY, 12 AUG 14 OCT APR, 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 18 APR 09 O9	COBALT RECOV FM BOT TERIAI (UG/G AS CO) 1979 1980 <10 1981 -	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 4 1 2	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 -	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300 1100 430 520 10000 1400 960	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350 640 180 370 12000 750 740	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3400 3400	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <1 <1 <1 <1 7	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 <1 <1 <1 <1	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10 10 10 	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5 -
DATE JULY, 12 AUG 14 OCT 16 APR, 09 MAY 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 18 APR 09 MAY 15 JULY, 15 JULY, 15 AUG 14	COBALT, RECOV FM BOT- TOM MA- TERIAI (UG/G AS CO) 1979 1980 1980 1981 	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 4 1 2 2	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 -	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300 1100 430 520 10000 1400 960	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350 640 180 370 12000 750 740 250	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3400 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <1 <1 <1 7	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10 10 10 	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5
DATE JULY, 12 AUG 14 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 18 APR 09 MAY 05 JUNE 23 30 30	COBALT RECOV FM BOT TERIAI (UG/G AS CO) 1979 1980 <10 -	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 4 1 2 2 2	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 -	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300 1100 430 520 10000 1400 960 1100 4600 1800	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350 640 180 370 12000 750 740 250 4100 340	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3400 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <1 <1 <1 7 7	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10 10 10 	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5 -
DATE JULY, 12 AUG 14 OCT 16 APR, 07 SEP 10 OCT 27 NOV 05 DEC 16 JAN, 15 FEB 18 APR 09 MAY 15 JULY 26 30 AUG 14 AUG 14 OCT 27 DEC 16 APR 09 AUG 14 OCT 27 DEC 16 APR 09 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 09 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 05 DEC 16 APR 09 DEC 16 APR 09 DEC 16 APR 09 DEC 16 APR 09 DEC 16 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 09 APR 20	COBALT RECOV FM BOT TERIAI (UG/G AS CO) 1979 1980 <1(<10 <10 <10 <10 -	COPPER, TOTAL RECOV- ERABLE (UG/L AS CU) 	COPPER, DIS- SOLVED (UG/L AS CU) <1 3 4 4 1 2 2 2 2	COPPER, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS CU) <10 <10 <10 -	IRON, TOTAL RECOV- ERABLE (UG/L AS FE) 870 910 480 1500 340 1300 1100 430 520 10000 1400 960 1100 4600 1800 2300	IRON, DIS- SOLVED (UG/L AS FE) 110 240 250 220 150 350 640 180 370 12000 750 740 250 4100 340 530	IRON, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS FE) 3400 	LEAD, TOTAL RECOV- ERABLE (UG/L AS PB) <1 <1 <1 7 7 7	LEAD, DIS- SOLVED (UG/L AS PB) 5 <1 <1 <1 <1 <1 <1 <1 <1 <1 <1 	LEAD, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS PB) 10 10 10 	LITHIUM DIS- SOLVED (UG/L AS LI) 3 5

NORTH FORK SAND RUN NEAR WILSON, MARYLAND (01594936) (CONTINUED)

DATE	MANGA- NESE, TOTAL RECOV- ERABLE (UG/L AS MN)	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANGA- NESE, RECOV. FM BOT- TOM MA- TERIAL (UG/G)	MERCURY TOTAL RECOV- ERABLE (UG/L AS HG)	MERCURY DIS- SOLVED (UG/L AS HG)	MERCURY RECOV. FM BOT- TOM MA- TERIAL (UG/G AS HG)	MOLYB- DENUM, DIS- SOLVED (UG/L AS MO)	NICKEL, TOTAL RECOV- ERABLE (UG/L AS NI)	NICKEL, DIS- SOLVED (UG/L AS NI)	SELE- NIUM, TOTAL (UG/L AS SE)	SELE- NIUM, DIS- SOLVED (UG/L AS SE)
JULY, 197	9										
12	560	570			<0.5		3		7		<1
14	650	680			<.5		<1		8		<1
16	340	350									
09	290	280									
07	310	310									
10	370	380	78			<.01					
27	870	780		<.1	<.1			9	7	<1	<1
05	470	480									
16	320	310									
15	1600	1600		<.1	<.1			38	35	<1	<1
18	410	430									
09	490	460		<.1	<.1			15	13	<1	<1
MAY 15	390	380									
JUNE	460	510									
30	440	480									
AUG	620	660									
SEP	370	410		<.1	<.1			10	5	<1	<1

DATE	SELE- NIUM, TOTAL IN BOT- TOM MA- TERIAL (UG/G)	SILVER, TOTAL RECOV- ERABLE (UG/L AS AG)	SILVER, DIS- SOLVED (UG/L AS AG)	STRON- TIUM, DIS- SOLVED (UG/L AS SR)	ZINC, TOTAL RECOV- ERABLE (UG/L AS ZN)	ZINC, DIS- SOLVED (UG/L AS ZN)	ZINC, RECOV. FM BOT- TOM MA- TERIAL (UG/G AS ZN)	CARBON, ORGANIC TOTAL (MG/L AS C)	CYANIDE TOTAL (MG/L AS CN)	PHENOLS TOTAL (UG/L)
JULY, 1	979		12	120		20				
12			12	120		20				
14				60		40				
16										
APR, 1 09	.980							9.9		
MAY								2.1		
SEP	41						6			
OCT	1				20	30		100000		
27		<1	<1		20	50				
05								2.9	<.01	3
DEC 16										
JAN, 15	1981	<1	0		100	70				
FEB								1.8	<.01	<1
APR			11114			2.0				
09		<1	<1		60	30				
MAY 15								4.6	<.01	<1
JUNE								3.8		
30								1.7		
AUG								3.5	<.01	<1
SEP 17		<1	<1		50	10	==	2.3		

DA	ATE	TIME	STRE FLC INST TANE (CF	AM- CI W, CC AN- DU OUS AN S) (UN	PE- IFIC DN- JCT- NCE MHOS) F	PH IELD I	LAB	TEMPI ATU AI (DEG	ER- RE, T R C) (1	EMPER- ATURE DEG C)	OXYO DI SOI (MO	GEN, LS- LVED G/L)	HARD- NESS (MG/L AS CACO3)	HAR NES NONC BONA (MG CAC	RD- SS, CAR- ATE S/L CO3)	ACID (MG AS	ITY /L H)	ACIDI (MG/ AS CACO	TY L 03)
APF	R, 1979														27		_		
18 AUG	B G	1130		8.0	140	5.4		1	2.0	7.5		11.1	4.	5	37			3.0	
21 NOV	1 V	1330		1.9	260	4.2		2	1.5	18.5		1.3	9:		90		.0	150	5
15 NOV	5 V, 1980	1330		6.1	148	4.8			2.5	3.5		11.6	2.00	6	57			1.	,
MAS	5 Y. 1981	0945		2.6	447	6.9	7.3		5.0	5.7		9.9	180	0	163		.1	-	
14	4 NE	1700		3.3	345	6.3	7.4	2	27.0	18.5	5	7.9	14	0	122		•1	5	.0
30	0	1145		7.0	405	7.8	6.8			17.8	3		18	0	158				
12	2	1045		1.2	535	7.1	7.2			19.3	3	8.6	27	0	253				
	DATE	CAI DI SC (M AS	JCIUM IS- DLVED 4G/L 5 CA)	MAGNE- SIUM, DIS- SOLVEE (MG/L AS MG)	SODIUM, DIS- SOLVED (MG/L AS NA)	POTAS- SIUM, DIS- SOLVED (MG/L AS K)	ALF LINJ LA O (MC AS CAC	(A- ITY AB G/L 5 CO3)	CARBO DIOXII DIS- SOLVH (MG/I AS CO2	DN DE SUI ED SC L (1 2) AS	LFATE IS- OLVED MG/L SO4)	CHLO RIDE DIS- SOLV (MG/ AS C	- F , R ED S L (L) A	LUO- IDE, DIS- OLVED MG/L AS F)	SILI DIS SOL (MG AS SIC	CA, VED /L	SOLI RESI AT 1 DEG DI SOL (MG	DS, DUE 80 . C S- VED /L)	
	APR,	1979		0.0		0.0			10		4.5	,	F	0.10		37			
	AUG	•	13	2.6	0.6	0.8			46	0	45	1	• •	10		5.1		154	
	NOV	•	29	5.4	.9		, ,			.0 .	60	1	· · ·	.10		5 1		106	
	NOV,	1980	17	3.4	1./	.9				.0	02	1	• 2	.10		4.5		210	
	MAY,	1981	57	9.1	L 1/	2.7	, .	17	4	.1	120	2	.0	.50		4.5		234	
	JUNE	•	40	7.5		1.7	, .	2.5	22	c	150	1	.0	.10		4.0		294	
	AUG		20	1.0		1.7	· ·	19	2	.0	240	1		.10		5.7		100	
	12	•	09	12	0.4	2.0		19	2	.9	240	T	• 4	.10		5.7		409	
	DATI	SOI SUI COI TU S S	LIDS, M OF NSTI- ENTS, DIS- OLVED MG/L)	SOLIDS, DIS- SOLVEI (TONS PER DAY)	SOLIDS, RESIDUE AT 105 D DEG. C, SUS- PENDED (MG/L)	SOLIDS, VOLA- TILE, DIS- SOLVED (MG/L)	NI NO2- D SO (M	TRO- EN, +NO3 IS- LVED G/L N)	ARSEN TOTA IN BO TOM M TERI (UG/ AS A	IC CA L R T- FM A- TO AL T G (S) A	DMIUM ECOV. BOT- M MA- ERIAL UG/G S CD)	CHRC MIUM RECC FM BC TOM M TERI (UG/)- CC 1, I 1, FN 0T- TC 1A- 7 (AL (G) A	DBALT, RECOV. M BOT- DM MA- FERIAL (UG/G AS CO)	COPH REC FM H TOM TEH (UC AS	PER, COV. BOT- MA- RIAL G/G CU)	IRC TOT REC ERA (UC AS	DN, CAL COV- ABLE G/L FE)	
	APR,	1979	71	1 5				0 50					_					000	
	AUG	•	145	1.5				0.58			<10		20	10		10		2900	
	NOV	•	145	./:	9		-			11	<10		20	10		10		2100	
	NOV,	1980	92	1.7				.48										2500	
	MAY,	1981	294	2.3	5	24	4	.41											
	JUNE	•••	210	2.1	18	2	9	.49											
	AUG	•	243	5.4	12	20	6	.41											
	12.	•	371	1.3	8	20	6	.23											
	DAT	I P R E A	RON, SUS- ENDED ECOV- RABLE UG/L S FE)	IRON, DIS- SOLVE (UG/L AS FE	IRON, RECOV. FM BOT- TOM MA- D TERIAL (UG/G) AS FE)	LEAD, RECOV FM BOT TOM MA- TERIA (UG/G AS PB	MA - NE - TO - RE L ER (U) AS	NGA- SE, DTAL COV- RABLE JG/L S MN)	MANG NESE SUS PEND RECC (UG/ AS M	A- , N ED V. S L (N) F	MANGA- NESE, DIS- SOLVED (UG/L AS MN)	MANO NESI RECO FM BO TOM I TER (UG,	GA- M E, DV. F DT- T MA- IAL /G)	ERCURY RECOV. M BOT- OM MA- TERIAL (UG/G AS HG)	SE: NI TO IN TOM TE (U	LE- UM, TAL BOT- MA- RIAL G/G)	ZI RE FM TOM TE (U AS	NC, COV. BOT- MA- RIAL G/G ZN)	
	APR,	1979	2600	27	0			240		20	220								
	AUG	• •	2000	27	0 46000	-	0	540		20	520		190					140	
	NOV		2000	4/	0 46000	1	-	500		20	590		*00	.00		0		140	
	NOV,	1980	2000	49	0		_	010		50	200								
	MAY,	1981		8	0		-				460								
	JUNE	•••		3	0	_					440								
	AUG	•••		12	0		_				380								
	12.			14	v	-				Aug	400								

APPENDIX B

Lithologic and Geophysical Well Logs

Lithologic Log for Deep Well At Mettiki Mine Well Cluster #1 Garrett County, Maryland

Well FA 31 State Permit: GA-73-2142 Altitude: 2,618 feet

Well FA 31--Continued

Sandstone, light- to medium-gray, fine-grained

Depth (ft)	Description	Depth (ft)	Description
0 - 17	Overburden	300 - 321	Shale, gray, soft; some reaction with acid
17 - 30	Shale, red and gray, very soft	321 - 325	Shale, gray, with some thin, hard zones
30 - 60	Shale, red and gray, medium-hard	325 - 342	Sandstone, clean quartz, very hard
60 - 70	Sandstone, with thin coal at 64 ft	324 - 357	Sandstone, gray, disaggregated, less hard
70 - 76	Shale, black	357 - 372	Sandstone, gray, medium-grained, with some
76 - 77	Sandstone, gray, well-cemented, with some		medium-gray shale
	thin shale	372 - 392	Sandstone, gray, medium-grained, disaggregated
77 - 81	Sandstone, gray	392 - 417	Shale, medium, some thin, hard zones; very
81 - 81.5	Sandstone, softer gray, with some carbon films		thin coal around 408 ft
81.5- 82.5	Sandstone, gray, harder	417 - 433	Sandy shale, medium-gray
82.5- 93	Shale; some sandstone, with thin coal at base	433 - 474	Sandstone, gray, medium- to coarse-grained,
93 - 96	Shale, dark gray to black		moderately hard; large fracture at 468 ft
96 - 100	Shale, medium-gray, with some hard zones;	474 - 478	Shale, black
	gritty but soft	478 - 480.5	Coal
100 - 110	Sandstone, gray, hard, with some soft zones	480.5- 481	Parting
110 - 112	Sandstone, coarse; slight reaction with acid;	481 - 484.7	Coal
	more water	484.7 487	Shale
112 - 120	Sandy shale, gray, soft	487 - 501	Shale, medium-gray, with soft, light-gray shale
120 - 125	Sandy shale, gray, harder	501 500	at base
125 - 132	Sandy shale, gray, softer	501 - 522	Shale, medium- to dark-gray
132 - 142	Sandstone, gray; reacts with acid	522 - 531	Shale and sandy shale; some thin sandstones
142 - 161.5	Shale, gray	531 - 541	Shale, mostly dark with some sandstone layers
161.5- 176	Sandstone, light-gray; some more water	541 - 543.5	Sandstone, light gray, fine-grained; interlaminated
176 - 177.5	Coal		with medium-gray shale
1/7.5- 1/8	Sandstone, light-gray	543.5- 543.8	Sandstone, light-gray, fine-grained
178 - 188	Shale, gray	543.8- 544.1	Snale, medium-gray, silty or sandy
188 - 210	Sandstone, light-gray, fine-grained, hard,	544.1- 544.3	Sandstone, light-gray, fine-grained
010 010	Well-cemented	544.5	Shale, medium-gray, silty
210 - 212	Sandstone, somewhat softer	544.5- 546	Sandstone, light-gray, interlaminated with
212 - 232	Sandstone, light-gray, hard		medium-gray silty, shale
232 - 237	Shale, medium-gray	546 - 550.6	Sandstone, light-gray, fine-grained
237 - 238	Shale, narder	550.6- 551	interlaminated with medium and with the
238 - 238.5	Shale, softer	EE1 _ 552 7	Endetone light gray fine ansight with
238.5- 247	with acid	551 - 552.7	small shale lenses
247 - 256	Shale, medium-gray, softer	552.7- 553	Sandstone, light-gray, fine-grained, interlaminated
256 - 265	Shale, harder		with medium-gray silty shale
265 - 282	Shale, dark-gray	553 - 553.9	Sandstone, light-gray, fine-grained
282 - 292	Shale, light-gray	553.9- 554.5	Sandstone, light-gray, fine-grained, interlaminated
292 - 300	Shale, gray, having some thin, hard zones;		with medium-gray silty shale
	some reaction with acid	554.5- 555.9	Sandstone, light-gray, fine-grained
		555.9- 556	Sandstone, light-gray, fine-grained, interlaminated with medium-gray silty shale

556 - 558.2

Well FA 31--Continued

Well FA 31--Continued

Depth (ft)	Description	Depth (ft)
558.2- 558.8	Sandstone, light-gray, fine-grained, interlaminated	681 - 690
	with medium-gray shale	690.8- 691
558.8- 559.6	Sandstone, light-gray, fine-grained, with very small, thin, medium-gray shale lenses	691 - 694
559.6- 559.6	Shale, dark-gray	
559.9- 560	Sandstone, light-gray, fine-grained, interlaminated with medium-gray shale	694 - 696
560 - 561.2	Shale, medium-gray	696.5- 701
561.2- 570.2	Sandstone, light-gray, fine- to medium-grained, very clean	701 - 702 702.5- 704
570.2- 572.9	Sandstone, light-gray, fine-grained, interlaminated with medium-gray shale	704.8- 711 711 - 714
572.9- 585.2	Sandstone, light-gray, fine- to medium-grained	714 - 719
585.2- 585.3	Shale, dark-gray	
585.3- 585.5	Sandstone, light-gray, fine-grained	719 - 721
585.5- 586.1	Shale, dark-gray	721 - 730
586.1- 591	Sandstone, light-gray, medium-grained	
591 - 603.5	Sandstone, gray, well-cemented, with some dark- gray clay seams and some irregular, coaly seams containing pyrite	730.2- 732 732 - 732
603.5- 616.5	Similar to above, but also some thin, soft, white seams (gypsum)	832.4- 741 741 - 751
616.5- 616.7	Shale, dark	
16.7- 617	Sandstone, gray	
517 - 618	Shale, gray, with some coal and some sandstone	751 - 761
518 - 620.5	Shale, dark with coal	
520.5- 621	Grades downward into sandstone	
21 - 631	Sandstone, gray, with some dark seams, some coaly seams with pyrite	761 - 771
631 - 636.3	Sandstone, gray	
636.3- 638	Shale, dark	771 - 774
638 - 641	Coal, with some dark shale; about 2 ft of coal	
	ground up; dark shale and coal contain pyrite	774.5- 780
641 - 643	Shale, dark, with fragments of sandstone	780 - 781
643 - 650	Siltstone, medium-gray, sandier in places	781 - 786
650 - 651	Shale, dark, loose	786.5- 786
651 - 656	Siltsone, medium-gray, gritty, or silty sandstone	
656 - 661	Becomes grittier downwards; sandstone at base	786.8- 787
661 - 665.5	Sandstone, gray, fine- to medium-grained, coarser, at base	787.4- 812
665.5- 671	Sandstone, gray, coarse-grained, coarsens downward	812 - 814
671 - 679.1	Sandstone, gray, medium- to coarse-grained, pebbly in parts	814.9- 815
679.1- 681	Sandstone, gray, medium-grained, coarsens downward	815.2- 819
		910 910

Dept (ft)	:h	Description
681 -	690.8	Sandstone, gray, coarse-grained, pebbly
690.8-	691	Shale, dark
691 -	694	Shale, medium-gray, medium-hard, grades down-
		ward into very fine-graned sandstone,
		then coarsens to fine-grained sandstone
694 -	696.5	Sandstone, medium-gray, very fine- to fine- grained
696.5-	701	Shale, light-gray, soft
701 -	702.5	Sandy shale or siltstone, gray
702.5-	704.8	Mudstone, brown, brecciated
704.8-	711	Shale, greenish
711 -	714	Siltstone, gray
/14 -	719	Shale, black, with Variable thicknesses of
710	701	Coal (less than 0.01 to 0.5 it thick)
719 -	720 2	Siltstone, gray in places very fine-grained
/21 -	730.2	sandstone
730.2-	732	Sandstone, gray, fine-grained
732 -	732.4	Siltstone, medium-gray, or very fine-grained sandstone
832.4-	741	Sandstone, gray, medium-grained
741 -	.751	Sandstone, medium-gray, medium-grained, with thin (less than 0.2 ft) conglomeritic zones; some cross-bedding
751 -	761	<pre>Sandstone, gray, medium-grained, in places conglomeritic, some cross-bedding, some coaly or shaly partings</pre>
761 -	771	Sandstone, gray, medium-grained, pebbly in places, coarsens toward bottom, coaly, pyrite- bearing partings
771 -	774.5	Sandstone, gray, coarse-grained, with pebbles and pyrite, black partings
774.5-	780	Conglomerate, gray, pebbles dominant
780 -	781	Similar to above, but fewer pebbles
781 -	786.5	Sandstone, light-gray, medium- to coarse-grained
786.5-	786.8	Conglomerate, light-gray, coaly film present at top and bottom
786.8-	787.4	Sandstone, light-gray, fine-grained, with very thin coaly streaks
787.4-	812	Shale, medium-gray, silty
812 -	814.9	Sandstone, light-gray, fine- to medium-grained
814.9-	815.2	Sandstone, medium-gray, fine-grained, interlaminated with carbonaceous films
815.2-	819	Sandstone, light-gray, medium-grained
819 -	819.2	Coal
819.2-	825	Sandstone, light-gray, medium-grained

Well FA 31--Continued

Well FA 31--Continued

Depth (ft)	Description	Depth (ft)	Description
825 - 827.5	Shale, medium-gray	937.7- 938.5	Coal
827.5 834	Sandstone, light-gray, medium-grained, with	938.5- 939	Shale, black
	some coaly, pyrite-bearing seams; some cross-	939 - 940.8	Clay, gray
	bedding	940.8- 941	Shale
834 - 837.5	Siltstone, medium-gray	941 - 941.5	Shale, gray
837.5- 838.5	Shale, medium-gray	941.5- 942	Clay, gray
838.5- 841	Sandstone, light-gray, medium-grained	942 - 942.5	Shale, gray
841 - 845	Sandstone, light-gray, medium-grained, with	942.5- 942.6	Clay, gray
	thin, dark streaks	942.6- 943.6	Shale, gray
845 - 856.5	Siltstone, medium-gray, with thin streaks of	943.6- 944	Clay, gray, shaly at base
	sandstone	944 - 945	Shale, gray
856.5- 865.2	Sandstone, gray, fine- to medium-grained	945 - 949.4	Siltstone, black, with plant fossils
865.2- 869	Shale and clay, medium-gray, coaly at top	949.4- 949.8	Shale, carbonaceous, with plant fossils
869 - 871	Sandstone, gray, fine-grained, some shaly and	949.8- 952	Shale, black, or siltstone
	coaly streaks	952 - 952.3	Clay, black, fissile, with thin coal seam at
871 - 872	Sandy shale, gray, with coaly seams		base
872 - 872.5	Sandstone, gray	952.3- 961	Siltstone, dark gray
872.5- 881	Sandstone, grades down to lighter-gray, less	961 - 963.4	Shale, gray
	shaly, with thin, coaly seans	963.4- 963.8	Coal
881 - 883.4	Sandstone, gray, fine- to medium-grained, with	963.8- 964.2	Shale, black
	coaly seams and some shale clasts; plant	964.2- 965	Shale, gray
	fossil at 882 ft	965 - 967.7	Shale, carbonaceous
883.4- 886	Shale, medium-gray, with some coaly seams	965.7- 968.5	Shale, gray
886 - 888.5	Sandstone, gray, fine- to medium-grained,	968.5- 968.9	Coal, with seams of shale
	mostly light but some darker	968.9- 969.4	Shale, gray
888.5- 889.7	Sandstone, light-gray, medium-grained, with	969.4- 971	Siltstone, gray
	some darker, fine-grained sandstone	971 - 972.9	Shale, dark-gray, with thin sandstone
889.7- 891	Shale, medium-gray, abrupt contact at top	972.9- 976.5	Sandstone, gray, medium-grained, with thin
891 - 896.5	Shale, dark-gray		layers of gray shale
896.5- 901	Shale, dark-gray, with some silty or coaly	976.5- 977.5	Shale, gray
	zones	977.5- 978.2	Sandstone, gray, medium- and coarse-grained,
901 - 915	Shale, dark-gray, a calcite-filled fracture		with thin layers of shale
	at 908 ft	978.2- 978.5	Conglomerate
915 - 918.5	Coal, with some shale near the top	978.5- 978.7	Shale, gray
918.5- 921	Shale, dark-gray	978.7- 979.5	Shale, black, with coal seam (less than 0.01
921 - 923.9	Shale, gray, or siltstone		ft)
923.9- 924	Coal	979.5- 980.3	Coal
924 - 929	Shale, gray, or siltstone with thin sandstone	980.3- 981	Shale, dark-gray, with 0.2 ft of black clay
929 - 931	Sandstone, gray		in middle
931 - 934.7	Sandstone, gray, with streaks of thin, black shale	981 - 988	Siltstone, gray, grading downward into medium- grained sandstone
934.7- 936.9	Shale, black, with some gray sandstone	988 - 991.5	Sandstone, gray, medium-grained, with seams
936.9- 937.4	Coal		of dark shale
937.4- 937.7	Shale, carbonaceous	991.5-1,001	Siltstone, gray, interbedded with gray sandstone

Lithologic Log for Deep Well At Mettiki Mine Well Cluster #2 Garrett County, Maryland

Well FB 22 State Permit: GA-73-2146 Altitude: 2,530 feet

Depth (ft)	Description	Depth (ft)	Description
1,001 -1,002.7	Siltstone, gray	0 - 22	Overburden - mostly yellow-red clay loam with
1,002.7-1,003.7	Coal		some boulders; wet zone at 13 ft
1,003.7-1,004.6	Shale, gray	22 - 37	Shale, medium-gray, hard; more water at 35
1,004.6-1,006.5	Siltstone, gray, grading downward into brownish-		and 37 ft
	gray sandstone	37 - 53	Similar to above, softer
1,006.5-1,014.5	Sandstone, brownish-gray, fine- to medium-grained	53 - 56	Similar to above, softer and darker
1,014.5-1,021	Siltstone, gray, with some sandstone interbedded	56 - 62	Shale, medium-gray, soft
1,021 -1,031	Sandstone, gray, fine- to medium-grained, with	62 - 67	Shale, gray, with some thin beds of red shale
	some zones of dark shale and some iron concretions	67 - 71	Shale, medium-gray
1,031 -1,034.3	Sandstone, gray, fine-grained, with some siltstone	71 - 83	Similar to above, softer; about 30 gal/min
1,034.3-1,035.3	Similar as above, but somewhat coarser		water coming in at 79 ft; thin, hard streaks
1,035.3-1,041	Sandstone, greenish-gray, lighter, medium-		at 79-83 ft
	grained	83 - 85	Sandstone, dirty gray
1,041 -1,051	Sandstone, greenish-gray, light, medium-grained,	85 - 90	Shale, dark-gray, with some pyrite
	micaceous, with some pyrite; recovered in	90 - 91.5	Coal
	one piece	91.5- 104	Shale, medium-gray
1,051 -1,061	Same as above, but with a streak of coal at	104 - 119	Shale, lighter-gray
	1,055.8 ft	119 - 134	Sandstone, gray, fine- to medium-grained
1,061 -1,071	Sandstone, greenish-gray, fine- to medium-grained	134 - 140	Sandstone, gray, not quite as hard, fine-grained
1,071 -1,075	Sandstone, gray, fine-grained, with some shale clasts	140 - 162	Sandstone, light-gray, harder, fine- to medium- grained
1,075 -1,075.5	Shale, dark-gray, fissile, with streaks of	162 - 164	Sandstone, gray, with some hard, gray shale
	siltstone or sandstone	164 - 182	Sandstone, light-gray, medium-grained
1,075.5-1,076.8	Siltstone, dark-gray, with streaks of sandstone	182 - 186	Shale, dark, sandy
	and a very thin coal streak	186 - 188	Coal, with shale parting
1,076.8-1,077.5	Sandstone, gray, fine- to medium-grained	188 - 192	Shale, gray
1,077.5-1,081	Siltstone, medium-gray	192 - 207	Sandstone, gray, fine- to medium-grained, with
1,081 -1,091	Siltstone, medium-gray, with some plant fossils		some thin, gray shale included
1,091 -1,106.2	Siltstone, medium-gray, with some very fine-	207 - 222	Sandstone, very light gray, clean, medium-graine
	grained sandstone and some very thin coal streaks; plant remains	222 - 236	Shaly sandstone, medium-gray, fine-grained, and sandy shale
1,106.2-1,109	Sandstone, light-gray, fine- to medium-grained,	236 - 245	Shale, red
к (л.	micaceous	245 - 252	Shale, medium-gray; some reaction with acid
1,109 -1,111	Sandstone, very light gray, medium-grained, micaceous	252 - 267	Siltstone, medium-gray; slight reaction with acid
1,111 -1,116.2	Sandstone, gray, medium-grained, some pebbles	267 - 282	Sandstone, medium-gray, fine-grained
	near top, lots more at base	282 - 295	Sandstone, reddish-gray, medium-grained; reacts
1,116.2-1,117.7	Shale, green		with acid
1,117.7-1,119	Shale, grayish-green, silty; or sandstone	295 - 298	Shale, dark gray
1,119 -1,121	Shale, red	298 - 300.5	Coal
1,121 -1,130	Shale, red, with green mottles	1750-047517 (1997) / 7514-04767	
1,130 -1,131	Shale, gray		
BOTTOM OF HOLE			

Well FA 31--Continued

Well FB 22--Continued

Well FB 22--Continued

Depth (ft)	Description	Depth (ft)	Description	
300.5- 307	Shale, dark-gray	590 - 595	Sandstone, light-gray, medium-grained, clean	
307 - 311	Clay, light-gray, very sticky	595 - 612	Sandstone, light- to medium-gray, very fine	
311 - 312	Shale, gray		to fine; dense; more porous near base	
312 - 317	Sandstone, gray, medium-grained	612 - 621	Sandstone, light-gray, medium- to coarse-grained	
317 - 327	Shale, light-gray		at top; grades to medium-grained at bottom	
327 - 342	Shale, medium-gray, sandy	521 - 623	Sandstone, light-gray, medium- to coarse-grained	
342 - 357	Sandstone, gray, fine- to medium-grained, with shaly sandstone		with shaly seams and clasts and some coaly seams	
357 - 387	Sandstone, medium-gray, fine- to medium-grained	623 - 638	Sandstone, light-gray, fine-grained; sharp	
387 - 402	Sandstone, darker-gray, fine- to medium-grained		contact at top; few seams and clasts	
402 - 417	Sandstone, greenish-gray, fine- to medium-grained, with some sandy shale; reacts with acid	638 - 640	Sandstone, light-gray, medium- to coarse-grained	
417 - 433	Sandstone, greenish-gray, mixed with red sandy shale; reacts with acid			
433 - 447	Shale, gray; some sandy shale			
447 - 462	Sandstone, gray, fine- to medium-grained; some sandy shale and shale			
462 - 501	Sandstone, gray, medium-grained, with some mica			
501 - 504	Shale, gray			
504 - 506	Coal			
506 - 509	Shale and coal			
509 - 512	Coal			
512 - 515	Shale and clay			
515 - 522	Clay, light- to medium-gray			
522 - 523.5	Similar to above, darker			
523.5- 528	Similar to above, lighter			
528 - 528.7	Clay, light-gray, sandy			
528.7- 542.4	Claystone, medium-gray, with some scattered sandy zones			
542.4- 544	Shale, dark-gray			
544 - 550	Sandstone, light-gray, fine- to medium-grained; well cemented			
550 - 560.5	Sandstone, light-gray, medium-grained, clean; becoming coarser downward			
560.5- 562	Claystone, dark-gray			
562 - 575	Sandstone, alternating light-gray, fine-grained, medium-grained; siltstone and shale			
575 - 580	Sandstone, light-gray, fine-grained; some very thin shaly or coaly streaks			
580 - 590	<pre>Sandstone, light-gray, fine- to medium-grained, clean; with some very thin coaly streaks; plant fossil, cross-bedding</pre>			

Lithologic Log for Deep Well At Mettiki Mine Well Cluster #3 Garrett County, Maryland

Well FB 26 State Permit: GA-73-2179 Altitude: 2,755 feet

Depti (ft)	n	Description
0 -	15	Overburden
15 -	18	Shale, gray, clayey, soft
18 -	21	Shale, gray, medium hard
21 -	23	Shale, dark-grav, soft
23 -	24.8	Coal
24.8-	36	Shale, light-gray, soft
36 -	38	Shale, dark-gray, soft
38 -	40	Coal
40 -	46	Shale, dark-grav, soft; water at 42 ft
46 -	52	Shale, grav, soft: water at base
52 -	55	Shale, grav, sandy, hard; water at base
55 -	62	Sandstone, gray, hard
62 -	73	Shale, dark-gray, soft to medium-hard
73 -	75.5	Coal
75.5-	82	Shale, dark-gray, soft; water at 76 ft
82 -	87	Shale, gray, medium-hard
87 -	92	Shale, dark-gray, soft; trace of coal at 88
		ft
92 -	107	Sandstone, gray, hard
107 -	120	Shale, dark-gray, soft
120 -	127	Shale, lighter-gray, soft to medium-hard
127 -	133	Shale, reddish-gray and greenish-gray
133 -	151	Shale, greenish-gray
151 -	162	Shale, greenish-gray, with thin streaks of
		darker material
162 -	166	Sandstone, brown, very hard
166 -	172	Sandstone, brown and gray; very hard
172 -	193	Sandstone, gray, fine-grained
193 -	202	Shale, gray, sandy
202 -	215	Siltstone, greenish-gray, sandy
215 -	222	Sandstone, gray, silty
222 -	225	Shale, gray
225 -	230	Shale, red
230 -	245	Shale, greenish-gray, sandy
245 -	248	Shale, brown, soft
248 -	250	Shale, gray, soft
250 -	251	Sandstone, gray
251 -	252	Shale, brownish-gray
252 -	259	Shale, gray

Well FB 26--Continued

D (epti ft)	h	Description
259	-	270	Shale, dark-brown
270	-	273	Coal
273	-	277	Shale, gray, sandy
277	-	291	Siltstone, grav
291	_	310	Shale, grav
310	_	312	Shale darker-grav
212		318	Shalo light-gray with streak of dark-gray
512		510	shale
318	-	321	Sandstone, light-gray, very fine, silty, or
			sandy siltstone
321	-	352	Sandstone, very light gray, fine-grained, with
			a thin seam of black shale at 344 ft
352	-	355	Shale, black
355	-	358	Sandstone, light-gray, fine-grained
358	-	359	Shale, black
359	_	361	Coal
361	-	364	Siltstone medium-grav
364		368	Shalo medium-gray
260		272	Siltstono modium-grav
272	-	372	Shilo modium-gray
200		202	Shale, medium-gray and siltstone
202		201 5	Sondstone gray fine to medium-grained
303	-	304.5	Sandscone, gray, Time- to medium grained
304.	5-	309	Shale, medium-gray
309	-	411	Chale grou
411	-	414	Shale, gray
414	-	418	Shale, red
418	-	420	Shale, gray
420	-	422	Shale, red
422	-	432	Shale, mixed red and gray
432	-	447	Shale, medium-gray
447	-	452	Shale, gray, with hard zones
452	-	462	Shale, gray
462	-	468	Shale, gray, with hard zones
468	-	476	Shale, gray, harder, and siltstone
476	-	478	Shale, black
478	-	481	Coal
481	-	487	Shale, very dark gray
487	-	490	Shale, medium-gray
490	-	493	Shale, medium-gray, harder
493	-	498	Clay, very light gray, soft
498	-	501	Shale, gray
501	-	517	Shale, light-gray
517	-	522	Shale or siltstone, medium-gray, sandy, with
			some red shale

Well FB 26--Continued

Depth (ft)		Description
522 -	537	Shale and siltstone, medium-gray
537 -	545	Siltstone and sandy siltstone, medium-gray
545 -	552	Siltstone, darker-gray, sandy
552 -	567	Shale, gray, hard, and slightly sandy shale
567 -	595	Shale, gray, soft
595 -	612	Shale or siltstone, greenish-gray, sandy, harder
612 -	627	Shale or siltstone, greenish-gray and some dark maroon; not as hard
627 -	655	Shale or siltstone, greenish-gray
655 -	665	Shale, black
665 -	668	Coal
668 -	669.5	Parting
669.5-	673	Coal
673 -	676	Shale, black and gray
676 -	682	Shale, gray, sandy-
682 -	687	Sandstone, light-gray, very fine-grained
687 -	772	Siltstone, gray, very hard, with some sandstone; water (less than 1 gal/min) at 767 ft
772 -	808	Sandstone, light-gray; some more water at 780 ft
808 -	825.4	Sandstone, medium-gray, fine-grained, with siltstone clasts at 811.7-812 ft; some dark- gray shaly or silty zones at base; also scatte very thin coaly seams
825 4-	832	Shale, black

FA 31 Altitude: 2618 feet

FA 31

FB 22 Altitude: 2525 feet

FB 26 Altitude: 2755 feet

FB 26 Altitude: 2755 feet

FB 26 Altitude: 2755 feet

FB 26 Altitude: 2755 feet

MARYLAND GEOLOGICAL SURVEY The Rotunda 711 W. 40th Street Baltimore, Maryland 21211

Selected Reports of Investigations:

1.	Chemical quality of water and trace elements in the Patuvent River Basin by S.G. Heidel and
3.	W.W. Frenier, 1965, 40 p
	by D. H. Boggess and S.G. Heidel, 1968, 69 p.
5.	Chemical quality reconnaissance of water of Maryland streams, by J.D. Thomas, 1966, 61 p.
9.	Chemical and physical character of municipal water supplies in Maryland, by J.D. Thomas and
10.	Ground-water occurrence in the Maryland Pied- mont, by L.J. Nutter and E.G. Otton, 1969, 56 p.
13.	Extent of brackish water in the tidal rivers of Maryland, by W.E. Webb and S.G. Heidel, 1970,
14.	46 p
16.	E.G. Otton, 1970, 39 p2.75 Flow characteristics of Maryland streams, by P.N.
	Walker, 1971, 160 p
17.	Water resources of Dorchester and Talbot Coun- ties, Maryland: With special emphasis on the ground-water potential of the Cambridge and Easton areas, by F.K. Mack, W.E. Webb, and R.A. Gardner, 1971, 107 p5.25
18.	Solid-waste disposal in the geohydrologic environ- ment of Maryland, by E.G. Otton, 1972, 59 p.
19.	Hydrogeology of the carbonate rocks, Frederick and Hagerstown Valleys, Maryland, by L.J. Nut- ter, 1973, 70 p
20.	Hydrogeology of the formation and neutralization of acid waters draining from underground mines of western Maryland, by E.F. Hollyday and S.W.
22.	An evaluation of the Magothy Aquifer in the Annapolis area, Maryland, by F.K. Mack, 1974, 75 p

24.	Availability of fresh ground water in northeastern
	Worcester County, Maryland: With special em-
	phasis on the Ocean City area, by J.M. Weigle,
	1974, 64 p
26.	Hydrogeology of the Triassic rocks of Maryland.
	by I. I. Nutter 1975 37 p 2.50
28	Digital simulation and prediction of water levels in
20.	the Magothy Aquifer in Southern Maryland by
	EV Mack and P. I. Mandle 1077 42 p
	1.K. Mack and K.J. Manule, 1977, 42 p.
21	Simulated changes in water level in the Direct
51.	Simulated changes in water level in the Piney
	Point Aquiter in Maryland, by J.F. williams III,
	1979, 50 p
33.	A quasi three-dimensional finite-difference
	ground-water flow model with a field application,
	by G. Achmad and J.M. Weigle, 1979, 22 p. with
	appendix
34.	The availability of ground water in western Mont-
	gomery County, Maryland, by E.G. Otton, 1981,
	76 p5.75
35.	Characteristics of streamflow in Maryland, by
	D.H. Carpenter, 1983, 238 p12.50
37.	Geohydrology of the fresh-water aquifer system in
	the vicinity of Ocean City, Maryland, with a sec-
	tion on simulated water-level changes, by J.M.
	Weigle and G. Achmad, 1982, 56 p10.00
38.	Hydrogeology, digital simulation, and geochem-
	istry of the Aquia and Piney Point-Nanjemoy
	aquifer system in Southern Maryland, by F.H.
	Chapelle and D.D. Drummond, 1982, 100 p.
39.	Hydrogeology of the upper Chesapeake Bay area,
	Maryland, with emphasis on aquifers in the
	Potomac Group, by E.G. Otton and R.J. Mandle,
	1984, 62 p
41.	First report on the hydrologic effects of under-
	ground coal mining in southern Garrett County.
	Maryland, by M.T. Duigon and M.J. Smigai.
	1985, 99 p6.75

*Available as microfiche only.

