RESOURCE ASSESSMENT SERVICE MARYLAND GEOLOGICAL SURVEY Emery T. Cleaves, Director

COASTAL AND ESTUARINE GEOLOGY FILE REPORT NO. 98-1

The shallow sediments of the middle Chincoteague Bay area in Maryland: physical and chemical characteristics

by

Darlene V. Wells, James M. Hill, M. June Park, and Christopher P. Williams

A report of the Maryland Department of Natural Resources pursuant to National Oceanic and Atmospheric Administration Award #NA67OZ0302

March, 1998

ii

Contents

ABSTRACT
INTRODUCTION
PREVIOUS STUDIES
STUDY AREA
GEOLOGIC SETTING
PHYSICAL CHARACTERISTICS
METHODS
STUDY APPROACH
FIELD METHODS
Coring Techniques
Surficial Sample Collection
LABORATORY ANALYSES
Xeroradiography and Initial Core Processing
Textural Analyses
Chemical Analyses
RESULTS
SEDIMENT TEXTURE17
Cores
Surficial Sediments
WATER CONTENT
GEOCHEMISTRY
Carbon
Nitrogen
Sulfur
Metals
Enrichment Factors
Variation from Historical Norms
DISCUSSION
CONCLUSIONS
ACKNOWLEDGMENTS
REFERENCES CITED
APPENDIX I- Sediment Core Data
APPENDIX II- Surficial Sediment Data
APPENDIX III- Quality Assurance/Quality Control

Figures

		Page
Figure 1.	Study area.	-
Figure 2.	Generalized geologic map of central Delmarva Peninsula with study area shown (boxed) (modified from Owens and Denny, 1979). See Figure 3 for pattern key.	8
Figure 3.	Cross-section showing stratigraphic relationship of geologic formations (from Owens and Denny, 1979) and pattern legend (modified from Owens and Denny, 1979) for geologic map shown in Figure 2.	9
Figure 4.	Water depths within the study area.	10
Figure 5.	Map showing shoreline segment measured for rates of erosion and accretion listed in Table I.(modified from Bartberger, 1973)	12
Figure 6.	Middlemoor complex as it existed in a)1850 when Green Run Inlet was opened, and b) 1900 after Green Run Inlet closed (from Biggs, 1970).	13
Figure 7.	Core locations.	15
Figure 8.	Surficial sample locations.	16
Figure 9.	NW-SE cross section through Chincoteague Bay at Pirate Islands showing rate of Holocene sedimentation at five locations where cores were collected (from Bartberger, 1976).	19
Figure 10.	Distribution of sediment type based on Shepard's (1954) classification.	21
Figure 11.	Distribution of total carbon in surficial sediments.	25
Figure 12.	Distribution of total nitrogen in surficial sediments.	27
Figure 13.	Distribution of total sulfur in surficial sediments.	29
Figure 14.	Plots of C/S versus depth in cores.	30
Figure 15.	Plots of EF for Zn versus depth in cores.	32
Figure 16.	Plots of variation values for Zn versus depth for cores 1 and 5	35

Figure 17.	Distribution of sigma levels for Zn variation from historical levels in surficial sediments.	37
U	Total carbon versus clay for surficial sediments collected in the middle Chincoteague Bay.	40

Tables

Table	Ι	Shoreline erosion and/or accretion data for the study area (lower half of Maryland portion of Chincoteague Bay (from Singewald and Slaughter, 1949)
Table	II	Summary of water content, percent nitrogen, carbon and sulfur for each sediment type for surficial sediments
Table	III	Correlation matrix for trace metal concentrations and sediment textural data based on all surficial sediment samples
Table	IV	Least squares coefficients for metal data
Table	V	Mean and standard deviation of the variation values calculated for historical sediment set
Table	VI	Textural and chemical data for core samples
Table	VII	²¹⁰ Pb activity data for sediment samples from cores 1 and 5
Table	VIII	Interval ages and sedimentation rates for cores 1 and 5, calculated by the CRS model
Table	IX	Location coordinates (latitude and longitude) and field descriptions for surficial samples collected in middle Chincoteague Bay
Table	Х	Textural and chemical data for surficial sediments collected in middle Chincoteague Bay
Table	XI	Mean and range of water contents and calculated weight loss after cleaning for each sediment type (Shepard's Classification) based on sediments collected in Isle of Wight and Assawoman Bays (Wells and others, 1994)

Table XII	Comparison of the results of replicate and triplicate textural analyses of selected surficial samples	
Table XIII	Results of nitrogen, carbon, and sulfur analyses of NIST-SRM #1646 (Estuarine Sediment) compared to the certified or known values	102
Table XIV	Results of metal analyses of standard reference materials compared to the certified values for metal analyses of the core sediments	103
Table XV	Results of metal analyses of standard reference materials compared to the certified values for metal analyses of the surficial sediments	104
Table XVI	Average detection limits for the metals based on the method used in this study.	104

ABSTRACT

The Maryland Geological Survey, Resource Assessment Service, initiated a multi-year investigation of the character of the shallow sediments of Maryland's Chincoteague and Sinepuxent Bays. This report presents the results of the third year study which focused on the physical and chemical characteristics of the surficial sediments of the lower half of the Maryland portion of Chincoteague Bay (*i.e.*, middle Chincoteague Bay). This year's study was funded by a grant/agreement from the National Oceanic and Atmospheric Administration, Award #NA67OZ0302.

Five sediment cores and 341 surficial sediment samples were collected in the middle Chincoteague Bay. The core and surficial sediments were analyzed for water content, textural properties, total nitrogen, carbon and sulfur, and for six metals: Cr, Cu, Fe, Mn, Ni, and Zn. Results from these analyses were used to map the distribution of sediment type, nitrogen, carbon and sulfur contents and relative enrichment of the six metals in the surficial sediments.

The five cores were collected in a variety of sedimentary environments, ranging from shallow tidal flats adjacent to Assateague Island to low energy lagoonal deposits within Johnson Bay area. Cores 1 and 5 were analyzed for ²¹⁰Pb activity, obtaining estimated average sedimentation rates of 0.17 ± 0.08 and 0.25 ± 0.14 cm/yr respectively. Although these rates are low compared to those reported for other areas of the coastal bays, they are probably representative of sedimentation rates within the Johnson Bay area.

Based on the textural analyses of surficial sediment samples, the average textural composition of the bay bottom sediments is 49% sand, 35% silt and 16% clay. Sand is the dominant sediment type found in the eastern half of the study area. Within Johnson Bay and along the western margin of the study area, clayey silt is the predominant sediment type, reflecting low energy conditions. Intermediate sized sediments such as sand-silt-clay, sandy silt, and silty sand are mapped along the central axis of the study area. These sediment represent transitional zones between the high energy sand and low energy clayey silt. Pockets of coarser material are mapped adjacent to the numerous islands, the erosion of which is the primary source of sediment to this area. As sediment is eroded, the coarser fraction stays in place while the fine fraction is winnowed out and redeposited in more sheltered areas.

Nitrogen, carbon, and sulfur contents reported are slightly less than those reported for Newport and Sinepuxent Bay and half of the values reported for Assawoman and Isle of Wight Bays. The lower contents are related to several factors. Overall, the lower values are related to low clay content. In addition, the fairly coarse sediments and shallow water promote aerobic bottom conditions, allowing reactive carbon to be oxidized before it is buried. As a result, a disproportionate amount of non-reactive carbon is left. Nitrogen contents, which mimic the behavior of carbon, show similar trends. Likewise, sulfur is lower as a result of the less reactive carbon being buried and available for anaerobic decay.

Metal data also indicate that the middle Chincoteague Bay is less affected by anthropogenic activities compared to the northern coastal bays. Of the metals measured, Cr, Cu, Fe Mn, and Ni show no significant increase over calculated historical levels. Zn is found to be elevated, with

levels higher than those reported for the upper Chincoteague Bay but less than the levels reported for Isle of Wight and Assawoman Bays.

INTRODUCTION

The Maryland coastal bay system consists of five bays: Assawoman Bay, Isle of Wight Bay, Sinepuxent Bay, Newport Bay and Chincoteague Bay. These coastal bays are valuable resources both economically and environmentally. During the last two decades, development pressures along the shoreline around the bays have raised concerns about the "health" of the bays. Yet, there is a paucity of environmental data available to adequately assess and monitor the bays.

An important component of the coastal bays aquatic ecosystem is the sediments, which have a controlling influence on both the biology and chemistry of the ecosystem. Benthic communities are largely controlled by physical and chemical characteristics of the bottom sediments. Studies in the Chesapeake Bay have shown that the greatest abundance and diversity of benthic organisms occur in mixed sediment environments.(Reinharz and O'Connell, 1981).

Sediments serve as both sinks and sources for pollutants. Many pollutants and nutrients introduced into the bays tend to accumulate and remain in the sediment which function as a sink. The amount of pollutants contained in a sediment is controlled by sediment texture. Pollutants, such as toxic metals and organics, are usually associated with fine grained, or muddy, sediments. The sediments can act as a source of pollutants, either through remobilization of these pollutants by way of natural processes (*i.e.*, diagenetic reactions), or by physical disturbance or mixing. Because the bays are shallow, with water depths averaging less than 2 meters, wind generated waves easily cause mixing of bottom sediments with overlying water. Likewise, human activities, such as dredging and boating, can also resuspend sediments. Nutrients and pollutants in sediments may be released into the water column during resuspension, thus affecting overlying water chemistry.

Sediment data are vital to two major projects recently initiated in the coastal bays. The first project is the Ocean City Water Resources Study, a current joint effort involving the U.S. Army Corps of Engineers, National Park Service, Maryland Department of Natural Resources, Worcester County and the Town of Ocean City. This project addresses a variety of problems including dredging and maintenance of navigation channels, regional sand management for Ocean City and Assateague Island, and environmental restoration in the back bays. The data from this study are directly applicable to the joint effort to assess dredged sediment taken from the various channels, to identify suitable sediment for island creation and wetland restoration, and to interpret hydrodynamic model results. The second project is the Environmental Protection Agency's National Estuarine Program (NEP). Recently, Maryland's coastal bays were accepted into the NEP. The sediment data from this study are essential in characterizing the bays, the first step toward developing management strategies for the NEP.

In order to obtain the necessary sediment data for the coastal bays, the Maryland Geological Survey began mapping physical and geochemical characteristics of the shallow sediments of the coastal bays. Isle of Wight and Assawoman Bays were completed in 1993 during a two year effort funded by the Minerals Management Service through the Association of American State Geologist Continental Margins Program (Wells and others, 1994a, 1994b). In 1994, under a grant from NOAA's CZM program, the Maryland Geological Survey began the investigation of the character of the shallow sediments of Maryland's lower coastal bays which include Sinepuxent, Newport and Chincoteague Bays. The area of study for the first year was Sinepuxent and Newport Bays (Wells

and others, 1996) and for the second year was the upper half of the Maryland portion of Chincoteague Bay (Wells and others, 1997). This report presents the results of the third year study which focused on the physical and chemical characteristics of the surficial sediments of the lower half of the Maryland portion of Chincoteague Bay (referred as the middle Chincoteague Bay).

The objectives of this study are to:

1) document selected physical and chemical characteristics of the shallow sediment column (upper 1 to 1.5 meter);

2) map the areal distribution of the surficial sediments and their characteristics;

3) establish a reference data set documenting the textural and chemical character of the bays to be used for future comparisons; and 4) develop a geochemical model specific to the sediments found in the coastal bays; the model can be used as an environmental assessment tool.

Presented in this report are the results and interpretation of the data collected in the study area. Results include the textural and chemical data from analyses of 341 surficial sediment samples and five sediment cores.

PREVIOUS STUDIES

Early studies focused primarily on water quality monitoring in the bays (Sieling 1958, 1959, 1960; Cerco and others, 1978; Allison 1975; and Fang and others, 1977). Water column studies conducted by Allison (1975) measured pH, salinity, water temperature, dissolved oxygen (DO), nutrients, chlorophyll-a, total iron, heavy metal and pesticide concentrations, turbidity, and fecal coliform bacteria. At two sites in the middle Chincoteague Bay area, Allison analyzed bottom sediments for six metals: Cu, Cr, Pb, Zn, Cd, and Hg. Although Allison concluded that the metals concentrations in the sediments were not significantly high, he did not elaborate on any relationship between sediment and water quality data.

Several studies examined the physical character of sediments from Chincoteague Bay (Bartberger and Biggs, 1970; Bartberger, 1973; 1976). These studies involved the analyses of sediments for grain size characteristics in order to determine the origin, distribution, and rates of accumulation of sediments in Sinepuxent, Newport and Chincoteague Bays (39 of the 147 samples, were collected in the middle Chincoteague Bay area). Sediments were measured for grain size and organic carbon. Results showed that the sandy sediments were found on the eastern margins of Chincoteague Bay. Fine grained sediments were located in the deeper areas and along the western shore areas. Organic carbon, measured in 135 samples, ranged from 0.0% to 3.9%. Only six of the 135 samples had carbon contents exceeding 2.0%. Bartberger considered the organic carbon contents to be lower than expected which he attributed to fairly low sedimentation rates in the bay. The primary source of sand was from Assateague Island in the form of overwash, aeolian transport, and sediment run-off. By comparison, sediment input from streams was minor.

In 1993, the Maryland Department of the Environment conducted an assessment of Maryland's coastal bay aquatic ecosystem and terrestrial pollutant loadings into the bays (UM and CESI, 1993). The assessment, based on existing information, examined data for trends in the overall quality of the bays ecosystem. Objectives of the study were to identify water quality problems and to develop strategies for the effective management of the bay system. The study identified several areas within the coastal bays, including Newport Bay, as areas exhibiting serious water quality problems as a result of several factors including poor flushing, development along the shorelines, and high nutrient loadings. Estimates of nutrient loading rates for total nitrogen, total phosphorous, total suspended solids, zinc, lead and biochemical oxygen demand were calculated to be very high for Newport Bay compared to those observed for selected portions of the Chesapeake Bay and other coastal bays. However, the study pointed out that there is a general lack of information regarding the toxic contamination in the coastal bays and recommended developing a baseline for priority pollutants in sediments and biota.

The Coastal Bays Joint Assessment Project (CBJA), a collaboration between Delaware, Maryland, and EPA (Region III), was conducted to assess the ecological conditions of the Delmarva coastal bay system and fill a data void identified by previous studies (Chaillou and Weisberg, 1995). The study area included Indian River, Rehoboth, Assawoman, Isle of Wight, Newport and Chincoteague Bays. In 1993, water, sediment and biological samples were taken at more than 200 locations and analyzed following methods and QA/QC procedures used by the EPA Environmental Monitoring and Assessment Program (EMAP). Sampling sites were selected using a stratified random sampling design which allowed assessment of the coastal bays on different levels: coastal bays as a whole; each of the four major subsystems (*i.e.*, Chincoteague Bay) and smaller target areas of special interests (i.e., upper Indian River, St. Martin River, Trappe Creek and artificial lagoons). Therefore, sampling sites were not evenly spaced throughout the study areas but were clustered. Although the emphasis of this study was biological assessment, sites were sampled for sediments to be analyzed for NOAA National Status and Trends suite of contaminants. However, due to costs constraints, only 21 sediment samples were analyzed. Results from CBJA indicated that a large portion of the coastal bays suffered from degraded environmental conditions, with more than 75% of the bay areas not meeting Chesapeake Bay Program Submersed Aquatic Vegetation (SAV) restoration goals. Of the four subsystems Chincoteague Bay was in the best condition. Results from CBJA were included in the document to nominate the Coastal Bays to the NEP.

STUDY AREA

GEOLOGIC SETTING

The study area is located on the Atlantic coast of the Delmarva Peninsula and lies between 38°7' N and 38° 0' N. The study area extends from Scott Hammocks/Wittington Pt south to the Maryland-Virginia state line, encompassing approximately the lower half of the Maryland portion of Chincoteague Bay (Figure 1).

Chincoteague Bay is separated from the Atlantic Ocean by Assateague Island which is part of the barrier island/southern spit unit of the Delmarva coastal compartment (Fisher, 1967). The bay is underlain by unconsolidated Coastal Plain sediments, the upper-most 60 meters of which are

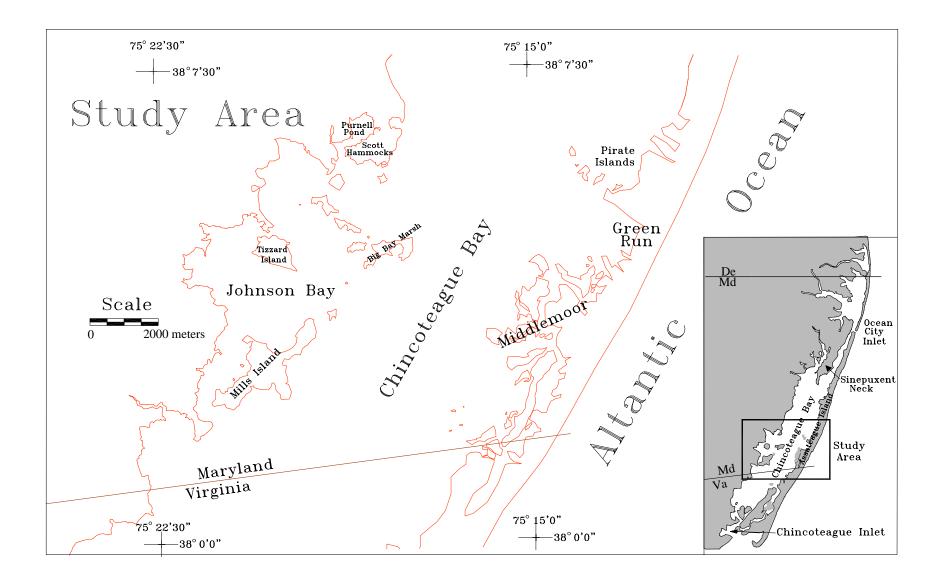
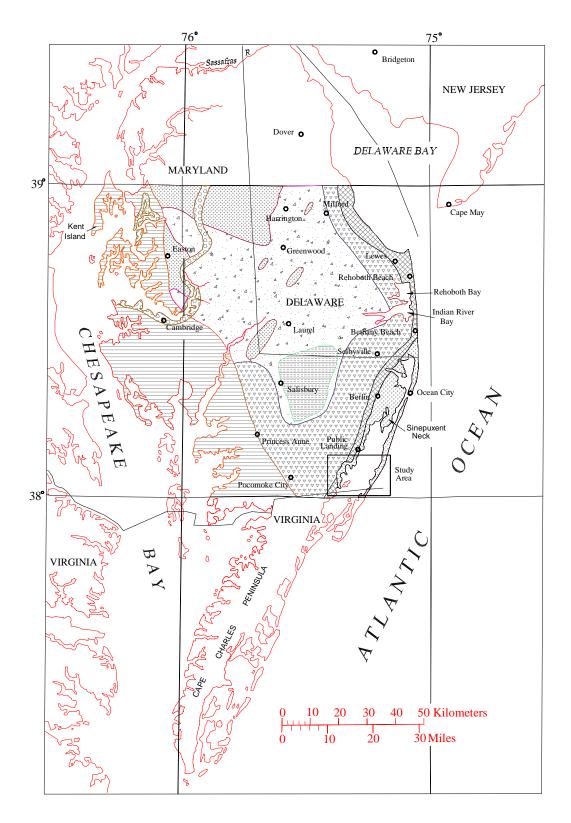
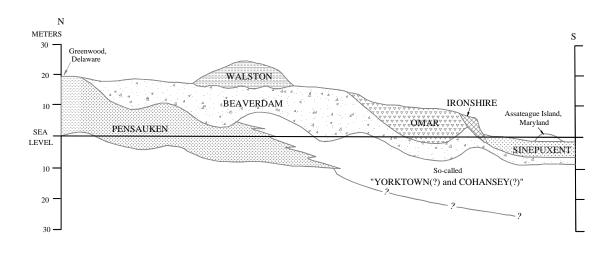


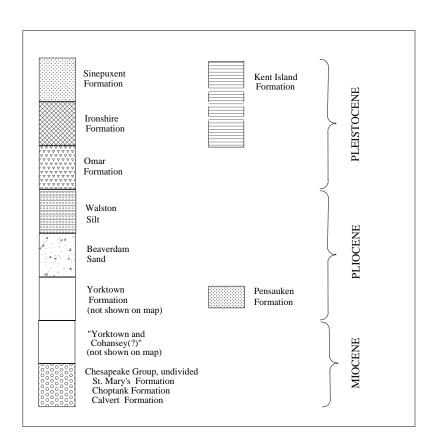
Figure 1. Study area.

Cenozoic in age. Sediments of the Sinepuxent Formation are exposed along much of Maryland's coastal area from Bethany Beach, Delaware, southward to the Maryland-Virginia border and directly underlie the study area (Figure 2). The Sinepuxent Formation was described by Owens and Denny (1979) based on information from drill holes along Sinepuxent Neck, the designated type locality for the Formation. The Sinepuxent Formation is composed of dark colored, poorly sorted, silty fine to medium sand with thin beds of peaty sand and black clay. Heavy minerals are abundant and consist of both amphibole and pyroxene minerals. All of the major clay mineral groups: kaolinite, montmorillonite, illite and chlorite, are represented. The sand consists of quartz, feldspar and abundant mica (muscovite, biotite, and chlorite). The high mica content makes the Sinepuxent Formation lithologically distinct from underlying older units (Owens and Denny, 1979).


The Sinepuxent Formation is interpreted to be a marginal marine deposit. Owens and Denny (1979) had assigned a mid-Wisconsin age (24-30 ka) to the formation based on ¹⁴C data. Later studies correlated the Sinepuxent Formation to the offshore Q2 deposits which were determined to be of oxygen-isotope Stage 5 age (between 80 to 120 ka) based on amino-acid racemization (Toscano, 1992; Toscano and others, 1989; Toscano and York, 1992).

Within most of the coastal bay area, the Sinepuxent rests unconformably on top of the Beaverdam Sand Formation which is Pliocene in age (Owens and Denny, 1979) (Figure 3). The western edge of the Sinepuxent formation butts up against the Ironshire Formation which consists of pale yellow to white sand and gravelly sand. Although the Ironshire Formation sits unconformably on top of the Beaverdam, at no point does it underlie the Sinepuxent Formation (Owens and Denny, 1979). Curiously, both Beaverdam Sand and Ironshire Formations are absent in the Johnson Bay area, thus the Sinepuxent rests directly on top of the Yorktown Formation (Miocene) and abuts the Omar Formation (Owens and Denny, 1978).


PHYSICAL CHARACTERISTICS


Chincoteague Bay is a microtidal ($\leq 2 \text{ m}$ tidal range) coastal lagoon. The bay is very shallow, the average water depth being less than a meter. Within the study area, depths greater than 2 meters occur locally along the western side of the main central axis of the bay (Figure 4).

The shallow bathymetry and restricted access to the ocean contribute to poor circulation and flushing within the study area. Chincoteague Bay is connected to the Atlantic Ocean through two inlets: Ocean City Inlet (through Sinepuxent Bay) to the north, and Chincoteague Inlet in Virginia to the south (Figure 1). The study area includes a portion of Chincoteague Bay located closer to Chincoteague Inlet in Virginia. Although Chincoteague Inlet probably has a greater influence with regard to tidal effect, overall influence from the ocean is minimal within the study area. Reported estimates for turn-around time in Chincoteague Bay range from 63 days (Pritchard, 1960) to 200 days (Sieling, 1958). Circulation patterns and bay water levels are controlled primarily by wind conditions. Casey and Wesche (1981) reported at a site near Public Landing (mid-point Chincoteague Bay) negligible tidal currents, but wind currents up to 12 cm/sec. At this site, tidal amplitude was measured at 17 cm. However, during storm conditions, they observed water levels varying as much as 63 cm.

Figure 2. Generalized geologic map of central Delmarva Peninsula with study area shown (boxed) (modified from Owens and Denny, 1979). See Figure 3 for pattern key.

Figure 3. Cross-section showing stratigraphic relationship of geologic formations (from Owens and Denny, 1979) and pattern key (modified from Owens and Denny, 1979) for geologic map shown in the cross-section above and in Figure 2.

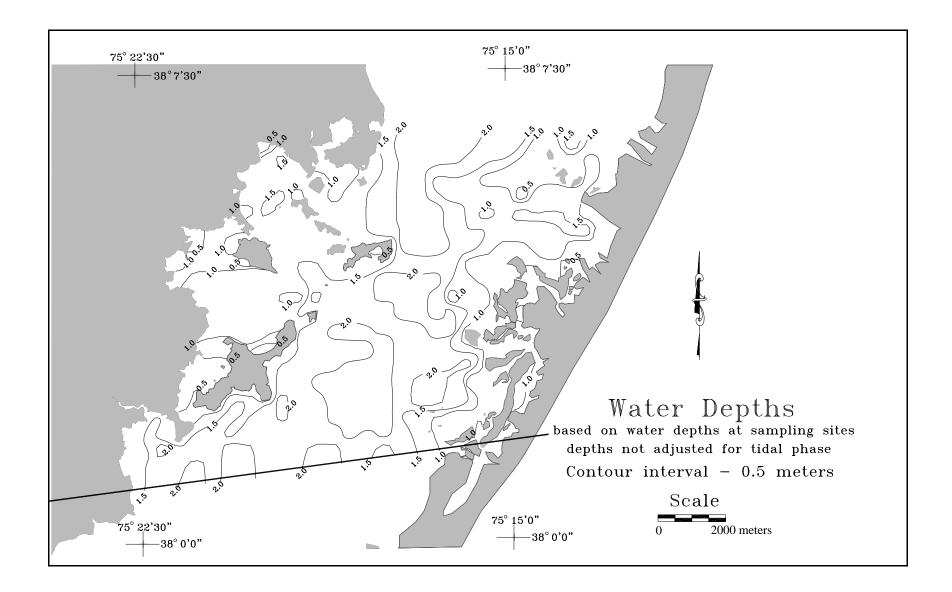
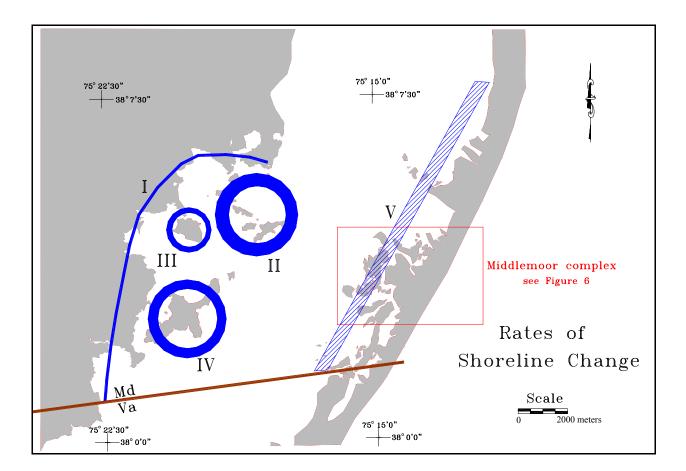


Figure 4. Water depths within the study area.

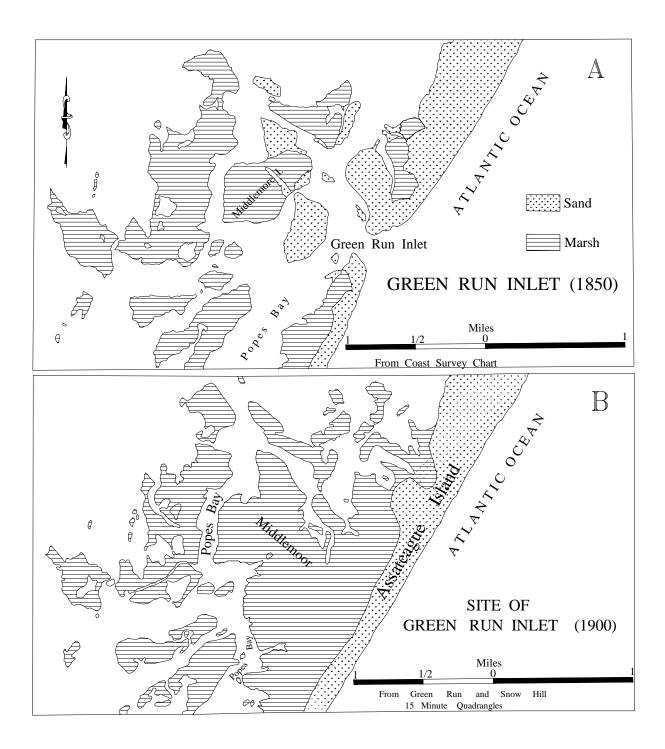
Salinity within Chincoteague Bay varies depending on season. Average salinity in mid-Chincoteague Bay averages 30.2 ppt (UM and CESI, 1993). However, due to high evaporation and poor circulation during the late summer, salinity will often approach or exceed that of sea water (32 ppt). Maximum salinity measured during the summer (Casey and Wesche, 1981) ranged from 31 ppt near Inlet Slough (Jim's Gut) on Assateague Island to 34 ppt just east of Public Landing. These two sites are just north of the the study area.

Within the study area, there are two significant marshy areas: Johnson Bay on the mainland side and Middlemoor Island complex on Assateague Island (Figure 1). Numerous eroding islands and low salt marsh margins characterized the Johnson Bay area. Many of the islands, such as Mills Island, are associated with sandy deposits. These islands align with Sinepuxent Neck (to the north) which is interpreted to be Pleistocene beach ridges (Rasmussen and Slaughter, 1955). Therefore, it is believed that many of the islands in the Johnson Bay area are Pleistocene in age rather than early Holocene. These islands are eroding at a rapid rate with Big Bay Islands having the highest rate of 8,740 m³ per year (Singewald and Slaughter, 1949). This rate is about four times that of the mainland shore bordering Johnson Bay (Table I). Shoreline segments subjected to highest erosion rates (0.6 to 2.4 m/yr) are those exposed to the NE and ENE direction (Conkwright, 1975).


1	Table I. Shoreline erosion and/or accretion data for the study area (lower half of Maryland
	portion of Chincoteague Bay (from Singewald and Slaughter, 1949, and Bartberger, 1973).

Shoreline Segment (See Figure 5)	Time Interval ¹ (yrs)	Length of shoreline measured (km)	Area lost (-) or gain (+) per km per year (m ² /km/yr)	Ave. land height ² (m)	Vol. lost per km per yr. (m ³ /km/yr)
I. Chincoteague Bay, west shore from Scott Hammock to Va. State line.	92	20.76	-150.9	0.91	-137.3
II. Big Bay Islands (inc. Rattlesnake Isl)	92	17.54	-653.8	0.76	-496.9
III. Tizzard Island	92	3.70	-326.9	0.76	-248.4
IV. Mills Island	92	12.39	-452.7	0.76	-344.1
V. Chincoteague Bay east shore, Lat. 38° 7' 30" to Va. State line.	92	31.70 ³	+452.7	0.76	+344.1

¹ Time interval based on comparisons between 1850 shoreline and 1942 shoreline.


² Elevations estimated by Bartberger (1973).

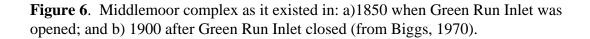

³ Includes segment of shoreline north of study area.

Figure 5. Map showing shoreline segments measured for rates of erosion and accretion listed in Table I. Solid fill indicates shoreline segments undergoing erosion. Stippled fill indicates shoreline segments undergoing net accretion. (modified from Bartberger, 1973). Historical shorelines for the Middlemoor Island complex (boxed) are detailed in Figure 6.

On the bay side of Assateague Island, opposite of Johnson Bay, is the Middlemoor Island marsh, the site of Green Run Inlet. The inlet was open in 1850, but by 1900, had closed (Figure 6). There have been other historical accounts of earlier inlets at this site. Remnants of a tidal delta formed from Green Run Inlet has since been incorporated in the Middlemoor Marsh. The other islands west of the marsh existed before the formation of Green Run Inlet (or at least the last account of the inlet) and may be remnant tidal deltas from even earlier inlets existing at this site. While the inlet was opened, this area had experienced accretion. However, since the early 1900s, some of the islands in the Middlemoor complex have undergone some erosion.

METHODS

STUDY APPROACH

The study involved two tasks. The first task consisted of the collection and analysis of a series of shallow sediment cores to define the vertical sequences in the sediment column. Based on downcore changes in chemical components, pre-anthropogenic sediments were identified and used to develop a predictive geochemical model by which surficial sediments can be evaluated. The second task involved the systematic collection of surficial sediments, and subsequent analyses of these sediments. The physical and chemical data from the surficial sediments were mapped defining the areal distribution of these characteristics.

FIELD METHODS

Coring Techniques

Cores were collected during the spring of 1997. Locations of the five (5) coring stations are shown in Figure 7. Positions of these stations were determined using an Ashtech ACA-12 GPS receiver, interfaced with a Starlink MRB-2A MSK Radiobeacon Differential GPS (DGPS) receiver. This GPS system is capable of real-time location accuracy of 2 to 4 meters. Latitude and longitude (NAD83) for each core are reported in Appendix I.

Five cores were collected within the deeper portions of the bays in order to sample a vertical sequence of fine grained, modern lagoonal muds. The cores were collected using a Benthos Gravity corer, Model #2171. Clear cellulose acetate butyrate (CAB) tubes, 6.7 cm in diameter, were used as core liners for both coring methods. As soon as the cores were collected, they were cut at the sediment-water interface and sealed. Once in the laboratory, the cores were refrigerated at 4°C until analysis.

Surficial Sample Collection

During the fall of 1996, surficial sample collection was conducted onboard an 18 ft whaler. The Ashtech ACA-12 GPS unit, described in previous section, was used for navigation. A sampling grid based on 500 by 500 meter spacing was used to determine sample locations. A total of 341 sediment samples were collected. Sample locations are shown in Figure 8. Latitude and longitude for each station are presented in Appendix II.

Sediment samples were collected using a hand-operated LaMotte stainless-steel dredge which sampled a bottom surface area of 19 cm x 14 cm. Upon collection, the samples were described and then placed in Whirl-PakTM bags. Field descriptions of the samples are presented in Appendix II.

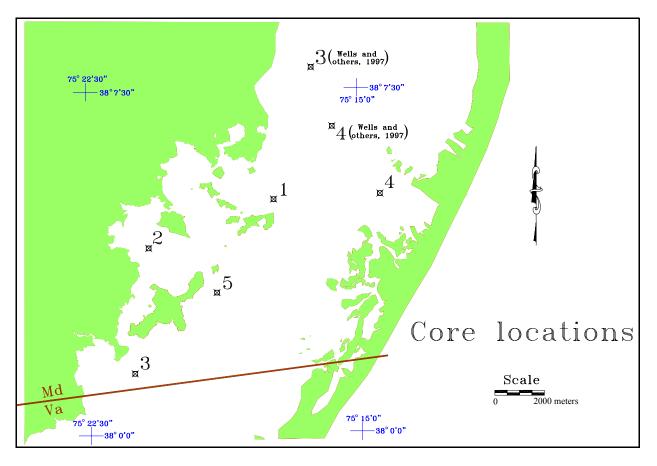


Figure 7. Core locations.

LABORATORY ANALYSES

Cores and surficial sediment samples were prepared and analyzed using the methods described in Wells and others (1996). Brief descriptions of these methods are presented in this report.

Xeroradiography and Initial Core Processing

Prior to analyses, the cores were x-rayed using a TORR-MED medical X-ray unit. After x-raying was completed, each core was extruded (or cut) from the plastic liner, split, photographed and described, noting any sedimentological structures and lithological changes. Xero-radiographs (X-rays) and core logs are presented in Appendix I. Sediment samples were taken at specific locations in the cores based on the visual and radiographic observations.

Textural Analyses

Sediment samples were analyzed for water content and grain size (sand, silt, clay content). Sand, silt and clay contents were determined using the textural analysis detailed in Kerhin and

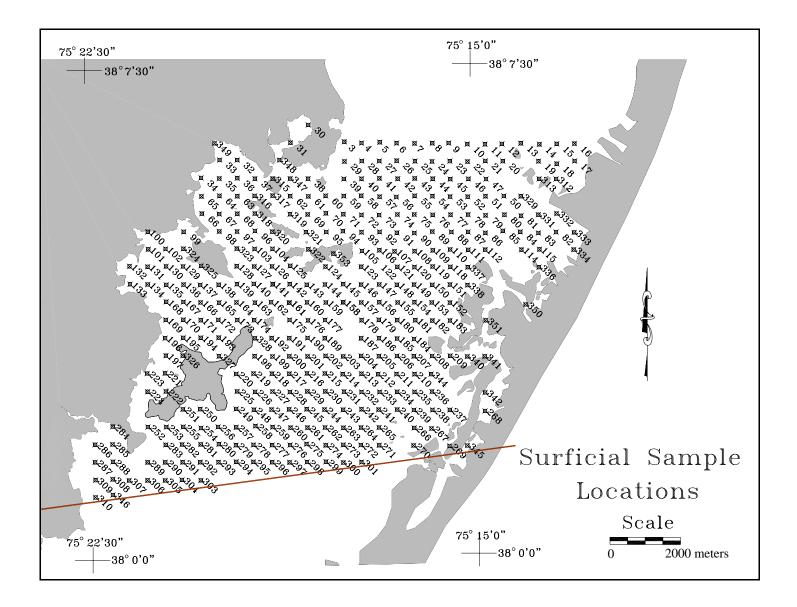


Figure 8. Surficial sample locations.

others, (1988). The sediments were categorized according to Shepard's (1954) classification based on percent sand, silt and clay components. The results of the textural analyses for core samples and surficial sediments are listed in Appendix I and II respectively. Quality assurance/quality control (QA/QC) for textual analyses is detailed in Appendix III.

Chemical Analyses

Sediments dried for water content determination were analyzed for total elemental nitrogen, carbon, sulfur, and six metals: Cr, Cu, Fe, Mn, Ni, and Zn. The sediments were analyzed for total nitrogen, carbon and sulfur (NCS) using a Carlo Erba NA1500 analyzer. The NA1500 Analyzer was configured for NCS analysis using the manufacturer's recommended settings. As a primary standard, 5-chloro- 4-hydroxy- 3-methoxy- benzylisothiourea phosphate was used. Blanks (tin capsules containing only vanadium pentoxide) were run after every 12 samples (unknowns) and standards. Replicates of every fifth sample were run. As a secondary standard, a National Institute of Standards and Technology reference material (NIST SRM #1646 - Estuarine Sediment) was run every 6 to 7 samples. Comparison of results of standard reference materials to their certified or reported values are presented in the QA/QC discussion (Appendix III).

Concentrations of the six metals were determined using a microwave digestion technique, followed by analyses of the digestate on an Inductively Coupled Argon Plasma Spectrophotometer (ICAP). The microwave digestion technique is detailed in Wells and others (1994a).

A Thermo Jarrel-Ash Atom Scan 25 sequential ICAP was used for the metal analysis. The wavelengths and conditions selected for the metals of interest were determined using digested bottom sediments from the selected sites in the Chesapeake Bay and reference materials from the NIST (NIST SRM #1646 - Estuarine Sediment; NIST SRM #2704 - Buffalo River Sediment) and the National Research Council of Canada (PACS-1 - Marine Sediment). Quality control was maintained using the method of bracketing standards (Van Loon, 1980) and include running a suite of the reference materials with every sample set. Results of the SRM analyses are presented in the QA/QC discussion (Appendix III).

RESULTS

SEDIMENT TEXTURE

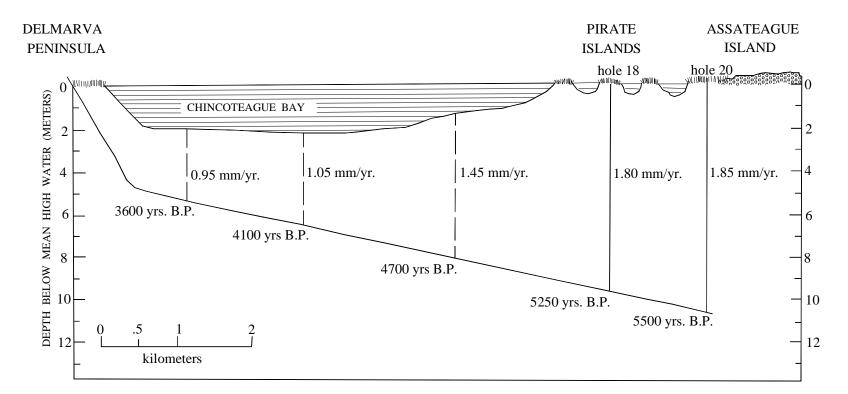
Cores

Cores were collected in several different depositional environments. All cores showed some degree of bioturbation (refer to Appendix I). Silt, the dominant component, decreased slightly with depth in all cores. Textural data for the cores are presented in Appendix I.

Core 1 was collected in the northern part of the study area, just north of Big Bay Marsh (Figure 7). The core which was collected in 1.8 meter of water, penetrated 0.5 meters into the

sediment. The sediments consisted of greenish black to greenish grey clayey silts. Clay increased with depth.

Core 2 was collected Johnson Bay just south of Tizzard Island, in 1.4 meters of water. The core penetrated sediments consisting of greenish grey silty clay grading into sand silt clay at 20 cm below the surface. The sediments were fairly bioturbated, and punctuated with large oyster shells.


Core 3 which penetrated 57 cm, was collected in the southern end of the study area, off Purnell's Point, in 2 meters of water. This core consisted of firm greenish grey clayey silt. The bottom of the core penetrated coarser sand-silt-clays. The central section of core was dominated by a large burrow filled with black, very smooth cohesive silty clay. The texture of the fill was unexpected in that it represented one of the finest grained sediment encountered in the lower coastal bays. The only other silty clays encountered were in Newport Bay (Wells and others, 1996).

Core 4 was collected on the east side of the study area near Green Run. The water depth at this core location was 2 meters. Although the area in which this core was collected was predominately sandy, the core penetrated over 63 cm of firm greenish grey to black mixture of sand silt clay, clayey silt and sandy silt.

Cores 5 was collected in the mid bay area just east of Mills Island, in 2 meters of water. The core penetrated sediments consisting of greenish black to grey clayey silt. Sand content decreased with depth. This core was very similar both in appearance and texture to core 1.

Based on relatively low levels of bioturbation and fairly fine grained texture, cores 1 and 5 were selected for ²¹⁰Pb activity analysis to determine sedimentation rates at these sites. The ²¹⁰Pb activity data are presented in Appendix I. For the top of the cores (upper 12 to 16 cm), sedimentation rates averaged 0.17 ± 0.08 cm/yr and 0.25 ± 0.14 cm/yr for core 1 and core 5 respectively. However, the ²¹⁰Pb activities measured in the cores were low, and the vertically integrated activities were calculated to be 9 dpm/cm² for core 1 and 18 dpm/cm² for core 5. These activities are much lower than those expected from atmospheric loading, which is 30 to 35 dpm/cm². These lower than expected activities may be an effect of how sediments accumulate at these coring sites. Accumulation may not be a steady process. There may be periods of erosion or no accumulation; these periods cannot be distinguished in the sediment column. Accumulating sediments may include older material eroded from nearby islands.

Biggs (1970) estimated sedimentation rates, which ranged from 0.095 cm/yr to 0.185 cm/yr along a transect across the bay at Pirate Islands (Figure 9), were based on depth to basal peats, the ages of which were determined by ¹⁴C isotopic dating. The depths of these basal peats ranged between 9.5 to 10 meters below MSL under the Pirate Islands. Biggs' rates are based on the total sediment column which consisted of a broad range of sediment types. Some of the sediments would be somewhat dewatered due to compaction. Biggs' rates are probably a little lower than those based on sediments fully saturated with water. The sedimentation rates of 0.17 cm/yr and 0.25 cm/yr reported for this report are based on sediment saturated with water (water content ranging from 35 to 50%). The rates based on depth to basal peat represent the average sedimentation rate for the entire time sequence (between 4,000 to 5,500 years- refer to Figure 9) and rates for a smaller time period may vary significantly. For example, the sedimentation rates for 2 cm intervals in cores 1

SE

Figure 9. NW-SE cross section through Chincoteague Bay at Pirate Islands showing rate of Holocene sedimentation at five locations where cores were collected. Numbered cores refer to borings made by Biggs (1970) (from Bartberger, 1976).

NW

and 5 range from 0.052 cm/yr to 0.389 cm/yr (Table VIII, Appendix I)

The sedimentation rates determine from cores 1 and 5 are also within those ²¹⁰Pb-derived rates reported for Newport Bay (rate of 0.14 cm/yr- Wells and others, 1996) and northern Chincoteague Bay (rate of 0.33 cm/yr- Wells and others, 1997). A rate of 0.35 cm/yr was reported for Assawoman Bay (Wells and others, 1994a) and rates of 0.26 cm/yr and 0.57 cm/yr have been reported for Rehoboth Bay and Indian River Bay, respectively (Chrzastowski, 1986). It may be noted that the sedimentation rates determined by ²¹⁰Pb activity are valid only for the fine grained lagoonal sediments in the immediate vicinity of the two sites in Chincoteague Bay, and not adjacent areas. ²¹⁰Pb -derived sedimentation rates can only be determined for fine grained sediments which absorb the isotope. Results cannot be extrapolated to adjacent sediments that contain little or no silt-or clay-sized particles. In addition, these rates were obtained from cores collected in the vicinity of moderately eroding islands (Mill Island and Big Bay Island); therefore, the sedimentation rates reflect the influx of reworked sediments.

Surficial Sediments

Based on the textural analyses of 341 surficial sediment samples (representing top 5 cm of sediment column), the average textural composition of the bay bottom sediment within the study area (middle Chincoteague Bay) is 49 % sand, 35% silt, and 16% clay. Overall, bottom sediments are less sandy compared to northern portion of Chinoteague Bay or Sinepuxent/Newport Bay Gravel is an extremely minor component. Only six samples contained gravel, all less than 1%.

Six of the ten Shepard's (1954) classifications are represented in the bottom sediments. Table II presents a summary of the classification of the surficial sediments collected in the middle Chincoteague Bay. Approximately one-third (32%) of the samples are classified as sand. Twenty-eight percent of the samples are classified as clayey silt. These percentages are different than those reported for the upper Chincoteague Bay and Sinepuxent/Newport Bay. They are more like those reported for Assawoman and Isle of Wight Bays (Wells and others, 1994b)

Along the eastern half of the middle Chincoteague Bay area, the predominate sediment type is sand with some pockets of sandy silt and silty sand (Figure 10). The coarser grained sediment is transported into the bay either by storm overwash across Assateague Island, by wind, or through former inlets. The area adjacent to Assateague Island is shallow with water depths less than 1.5 meters. Wind-generated waves constantly rework bottom sediments, removing finer grained materials, which eventually settle in sheltered areas such as the channels within the Middlemoor area, or in deeper water. There are several pockets of finer grained sediment; silty sand, sandy silt and sand-silt-clay, associated with small islands along the bay side of Assateague, and most likely represent sediment eroded from these islands. Very fine grained sediments are found in the channels between the islands

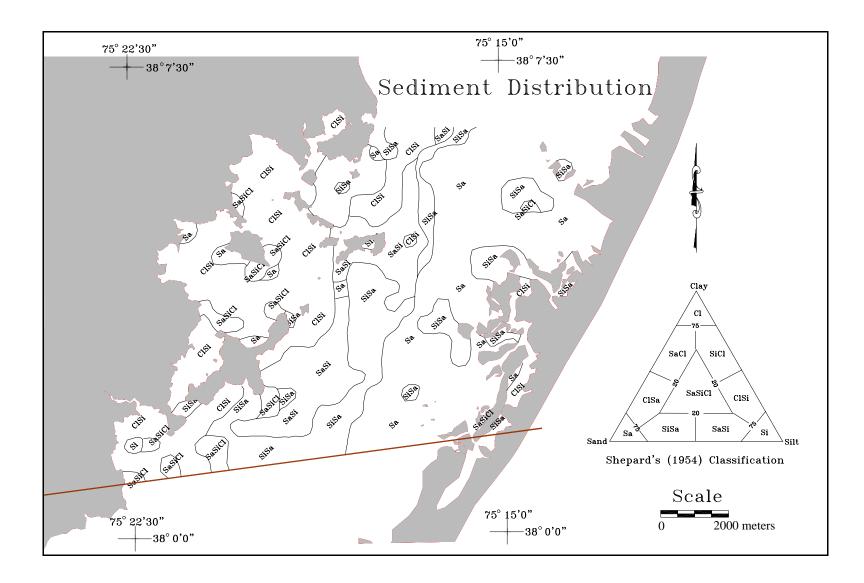


Figure 10. Distribution of sediment type based on Shepard's (1954) classification.

Table II. Summary of water content, percent nitrogen, carbon and sulfur for each sediment type for surficial sediments collected in the middle Chincoteague Bay area. The total number of surficial sediments analyzed is 341.

Sediment Type	Number	%of	Mean							
(Shepard's (1954) Classification)	of samples	total samples	Water (% wet weight)	Nitrogen (%dry weight)	Carbon (%dry weight)	Sulfur (%dry weight)				
SAND	110*	32.3	24.5 ±3.4	0.03 ±0.01	0.33 ±0.18	0.08 ±0.03				
SILTY SAND	64	18.8	28.2 ±4.4	0.06 ±0.02	0.82 ±0.69	0.18 ±0.08				
SANDY SILT	42	12.3	33.9 ±3.2	0.07 ±0.01	0.94 ±0.35	0.26 ±0.04				
SAND-SILT-CLAY	28	8.2	39.8 ±4.0	0.11 ±0.02	1.27 ±0.29	0.32 ±0.12				
CLAYEY SILT	96	28.2	45.8 ±4.8	0.13 ±0.03	1.50 ±0.38	0.42 ±0.19				
SILT	1	0.3	42.9	0.1	0.86	0.28				

*The number of sand samples used to calculate means for nitrogen, carbon, and sulfur values was 54. Fifty-six sand samples were not analyzed for chemistry due to the difficulty in grinding the coarser sand particles in preparation for analyses.

Westward across the bay, sandy sediments grade into sandy silts, silty sands, and sand-siltclays. These sediments represent transitional zones between the high-energy sand deposits and lowenergy clayey silt deposits. Clayey silts are mapped in the Johnson Bay area and along the western margin of the study area. These broad areas of fine grained clayey silts most likely reflects both lower energy conditions and proximity to an eroding marsh shoreline which contribute muddy sediments. The pockets of sand-silt-clays, silty sand, sandy silt and sand are associated with the numerous islands in Johnson Bay and Scott Hammock neck. The source of these sediments is most likely shore erosion.

WATER CONTENT

Water contents in cores sample ranged from 31% to 51%. The highest content was measured in the silty clay burrow fill sampled from core 3. For the other cores, water content was fairly constant with depth, variation depending on changes in texture.

Water contents in the surficial sediments range from 19% for sand to 59% for clayey silt.

Correlation coefficients for surficial sediment indicate that water contents are strongly associated with the textural components of the sediments (Table III). There is a high positive correlation between percent water and clay content (r = 0.94) and a negative correlation between percent water and sand content (r = -0.89). Association between water content and silt is fairly strong (r = 0.82), but weaker than the correlations with the other grain size fractions.

GEOCHEMISTRY

Carbon

Total carbon contents measured in the core sediments range from 0.78 to 2.04% with a mean value of 1.33%. The highest carbon value (2.04%) was obtained from the silty clay burrow fill found in core 3. (see Appendix I: Core 2, 20-27 cm). Carbon contents measured in the surficial sediments range from 0.10 to 4.65%, averaging 1.00% for the study area. The highest value was obtained for a sample containing abundant shell hash and is treated as an anomaly. Although the overall carbon contents are slightly higher than those obtained for the upper portion of Chincoteague Bay (Wells and others, 1997), they are overall lower than those obtained in Isle of Wight and Assawoman Bays (Wells and others, 1994b) and slightly lower than those obtained in Sinepuxent and Newport Bays (Wells and others, 1996). Comparisons of summary statistics for sediment type from this study (Table I) and the Isle of Wight/Assawoman Study (see Wells and other, 1994b) indicate that the finer grained sediments (*i.e.*, sand-silt-clay, clayey silt, and silty clay) in the middle Chincoteague Bay area contain less than half the amount of total carbon as those sediments found in the upper two bays.

Correlations analysis of surficial sediment data for middle Chincoteague Bay yielded lower coefficient values compared to those obtained for other study areas in the coastal bays. Nevertheless, this year's results reveal a strong association between carbon content and percent water (r = 0.81) (Table III). Correlation coefficients (r) between carbon content and sand, silt, clay contents are -0.73, 0.65 and 0.80, respectively, indicating that carbon has the highest association with the clay fraction.

The carbon content distribution generally follows the sediment distribution. The lowest carbon contents are found in areas characterized by sandy sediments (Figure 11). Along the eastern half of the study area, carbon content is relatively low, averaging less than one percent for the sediments analyzed. Higher energy conditions are characteristic of this fairly shallow area, where the mean water depth is less than one meter. Here, constant reworking of the sediments by wave action results in the removal of the fine grained materials, including the organics. Higher carbon is found locally corresponding to those isolated spots of fine grained sediments, or area where shell fragment have accumulated (such as samples 187, 278, 280 and 344- refer to field descriptions in Appendix II).

Table III. Correlation matrix for metal concentrations and sediment textural data based on all surficial sediment samples. The correlations were done using Pearson product-moment technique (Johnson and Wichern, 1982). Correlation analysis was conducted pairwise, to include all samples with missing parameter values. Values listed in table are Pearson correlation coefficients (r). Sample sizes for individual correlations range from 262 to 339. Significant levels for all values are less than 0.01 (critical value of r at 99% = 0.479).

· · · · · · · · · · · · · · · · · · ·		,											
	H_2O	%Sand	%Silt	%Clay	Ν	С	S	Cr	Cu	Fe	Mn	Ni	Zn
%Water (H ₂ O)	1.000												
%Sand	-0.886	1.000											
%Silt	0.815	-0.983	1.000										
%Clay	0.939	-0.942	0.864	1.000									
%Nitrogen (N)	0.912	-0.853	0.750	0.942	1.000								
%Carbon (C)	0.807	-0.733	0.650	0.799	0.845	1.000							
%Sulfur (S)	0.882	-0.752	0.679	0.797	0.893	0.728	1.000						
Chrome (Cr)	0.900	-0.956	0.885	0.977	0.909	0.755	0.767	1.000					
Copper (Cu)	0.608	-0.591	0.516	0.648	0.615	0.473	0.514	0.655	1.000				
Iron (Fe)	0.900	-0.958	0.889	0.974	0.908	0.764	0.778	0.994	0.639	1.000			
Manganese(Mn)	0.623	-0.783	0.783	0.697	0.622	0.627	0.513	0.777	0.424	0.799	1.000		
Nickel (Ni)	0.817	-0.809	0.719	0.870	0.835	0.613	0.718	0.877	0.614	0.869	0.605	1.000	
Zinc (Zn)	0.909	-0.952	0.876	0.984	0.925	0.768	0.778	0.995	0.657	0.991	0.754	0.870	1.000

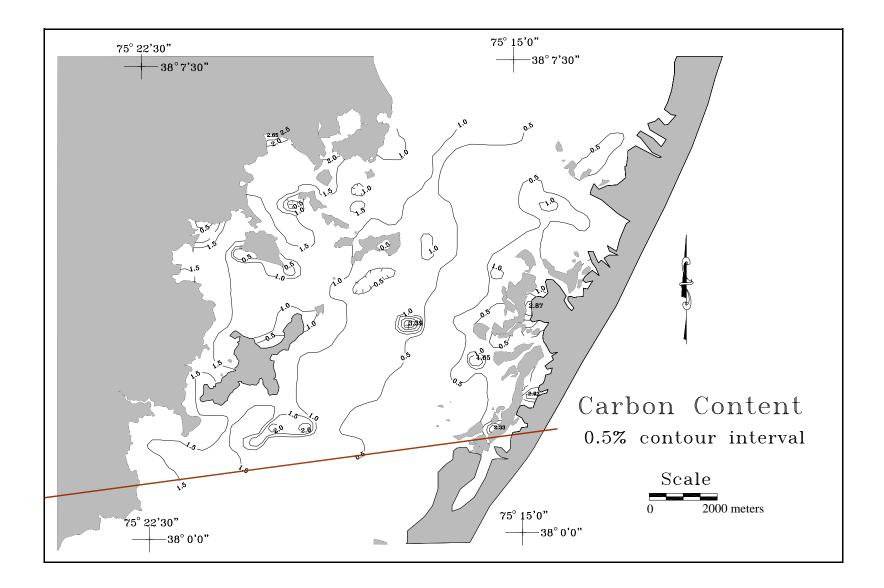


Figure 11. Distribution of total carbon in surficial sediments.

Higher carbon contents (%C > 1.0) were found in sediments collected from the western margin of the study area. Areas of higher carbon content correspond to areas of finer grained sediments, which accumulate under lower-energy conditions, such as in deeper water or sheltered areas. Within this study area, the finer grained material with higher carbon contents are found primarily in the more sheltered areas such as Johnson Bay, in the channels in the Middlemoor complex and in Purnell Pond (behind Scott Hammock).

Nitrogen

Total nitrogen contents in the core sediments range from 0.06% to 0.17% and average 0.10%. The highest nitrogen value was obtained from the fine grained burrow fill sediment in Core 3. Based on surficial sediments, nitrogen contents range from 0.01 to 0.29%, averaging 0.08%. The highest values for surficial sediments were obtained from clayey silts collected in the channel in the Middlemoor complex (samples 268, 269, and 351) and in the sheltered aeas in Purnell Pond (samples 30 and 31) and Boxiron Creek (sample 349) (Figure 12). Overall, the finer grained sediments (*i.e.*, sand-silt-clay, and clayey silt) in the middle Chincoteague Bay contain slightly less total nitrogen than the sediments found in the Sinepuxent and Newport Bays.

Correlation analysis of the chemical and textural data for surficial sediments show that nitrogen content of sediments is very strongly related to carbon content (r = 0.94) (Table III). The strong relationship between nitrogen and carbon reflects the fact that nitrogen comes primarily from organic matter found in the sediments (Hill and others, 1992). The relative amounts of carbon and nitrogen vary for different types of organic material. In this report, type of organic material refers to either marine organic material or terrestrial organic material. Marine organic material which includes that from primary production, consists primarily of planktonic derived material which contains proteins and amino acids and tends to be more reactive and higher in nitrogen content. The N/C ratio for this type of organic material would approach 0.176, the ratio calculated for Redfield's average composition of plankton (Redfield and others, 1963). Terrestrial organic material consists of land derived plant debris which tends to be less reactive and low in nitrogen content. N/C values for terrestrial organic material is expected to be much lower than that of plankton. Intermediate values for N/C reflect a mixture of the two types of organic material.

The N/C ratios for surficial sediment samples average 0.086 ± 0.015 , which is slightly lower than that obtained for Newport and Sinepuxent Bays (mean = 0.1) and much lower than the average ratio of 0.142 ± 0.16 obtained for sediments collected in Isle of Wight and Assawoman Bays (Wells and others, 1994b). The average N/C ratio calculated from this study is half of Redfield's value. Similar low values were calculated from cores sediment collected in the northern Chesapeake Bay. The Chesapeake Bay values were attributed to high terrestrial input as further evident from $\delta^{13}C$ data (Cornwell and Sampou, 1995). The low N/C ratios for the middle Chincoteague Bay area suggest that a higher proportion carbon found in sediments comes from terrestrial organic material compared to sediments from Isle of Wight and Assawoman Bays. N/C ratios calculated for core sediments obtain for this study are fairly constant with depth.

Sulfur

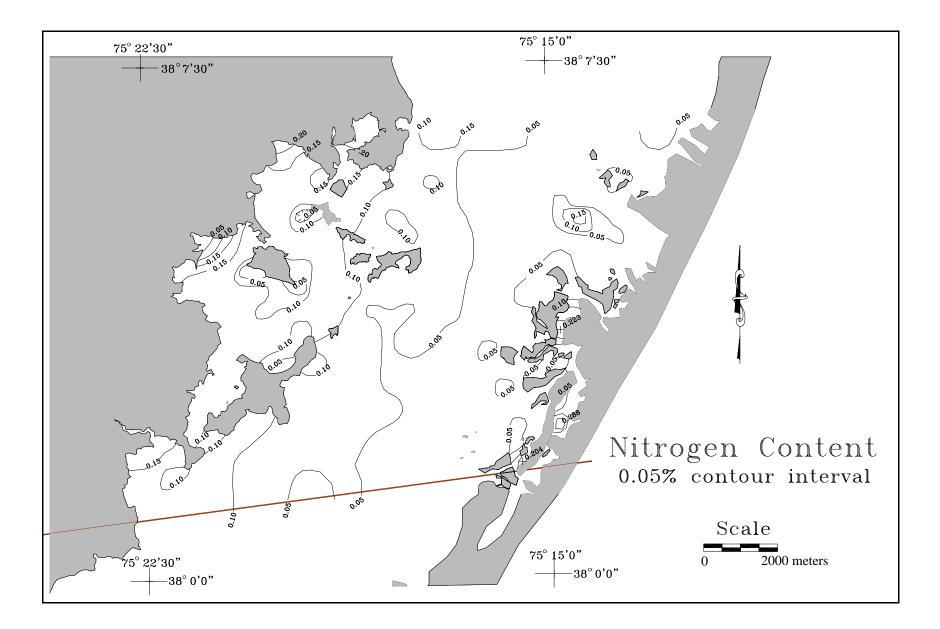


Figure 12. Distribution of total nitrogen in surficial sediments.

Sulfur in sediments is found primarily as inorganic metal sulfides. These sulfides form as a result of a bacterially mediated reaction during which organic carbon is oxidized using dissolved sulfate (SO_4^{-2}) from seawater as an oxidant (Berner, 1967, 1970; Goldhaber and Kaplan, 1974). During the process that occurs under anaerobic conditions, sulfate is reduced to sulfide. The sulfide reacts with ferrous iron (Fe⁺²) forming an iron monosulfide precipitate which further reacts with elemental sulfur to form FeS₂ (pyrite and its polymorph, marcasite) (Berner, 1970). As a result of this process, sulfur is enriched and preserved in the sediments as the amount of carbon is depleted.

Total sulfur contents for core samples range from 0.28 to 1.70% and average 0.78%. Sulfur contents increased with depth in all cores. Total sulfur contents measured in surficial sediments are lower, ranging from 0.01% to 1.38% and averaging 0.26%. The sediments from this study contain about a third of the amount of sulfur measured in the sediments from Isle of Wight and Assawoman Bays.

Results of correlation analysis on surficial sediment data show moderately strong associations between sulfur and clay content (r=0.79), carbon content (r=0.73), and water content (r=0.81) Correlation between sulfur and silt is weaker (r=0.68). These correlation values are less that those obtained for sediments in the upper Chincoteague Bay. Nevertheless, the association between sulfur and carbon reflects the process by which sulfur is "fixed" in the sediments as a result of the anaerobic decay of organic carbon. As with carbon, sulfur also is associated with the finer grained (*i.e.*, clay) sediments. Figure 13 presents the distribution of sulfur content in surficial sediments. The distribution of sulfur reflect the sediment texture. Highest sulfur contents were obtained from fine grained sediments collected in the more sheltered areas such as channels in the Middlemoor complex and Purnell Pond.

The carbon to sulfur (C/S) ratios for surficial samples average 4.13 ± 2.33 . These values are much higher than the C/S ratio reported for modern marine sediments, 2.8 ± 1.5 (Berner and Raiswell, 1984). The higher ratios most likely reflect the oxygenated conditions at the sediment/water column interface. In most of the study area, the shallow water and the relatively coarse texture of the sediments (*i.e.*, silt and sand) contribute to conditions by which the bottom sediments are mixed and well oxygenated. Under aerobic conditions, sulfur is not reduced and preserved. However, at fairly shallow depths in the sediment column, anoxic conditions are established, allowing sulfate reduction. The ratio of carbon to sulfur decreases rather rapidly in the top 10 to 20 cm, leveling off between 1.0 and 1.5 (Figure 14). The C/S ratios for deeper sediments are similar to values Berner and Raiswell (1984) reported for core sediment obtained in Chesapeake Bay in salinities greater than $19^{0}/_{00}$. This downcore decrease is expected as sediments become enriched with sulfur over time (*i.e.* increased depth of burial) while carbon is metabolized.

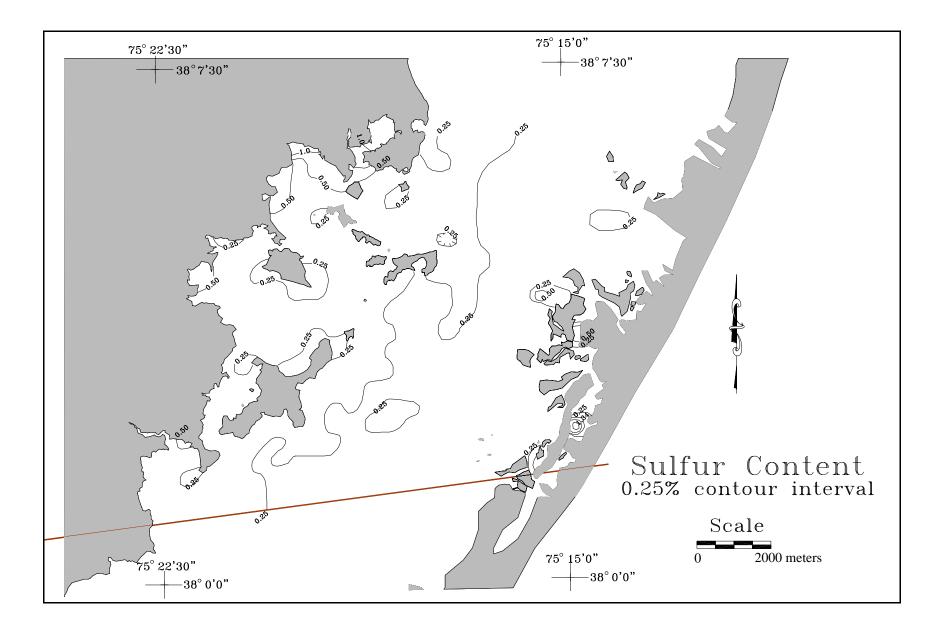


Figure 13. Distribution of total sulfur in surficial sediments.

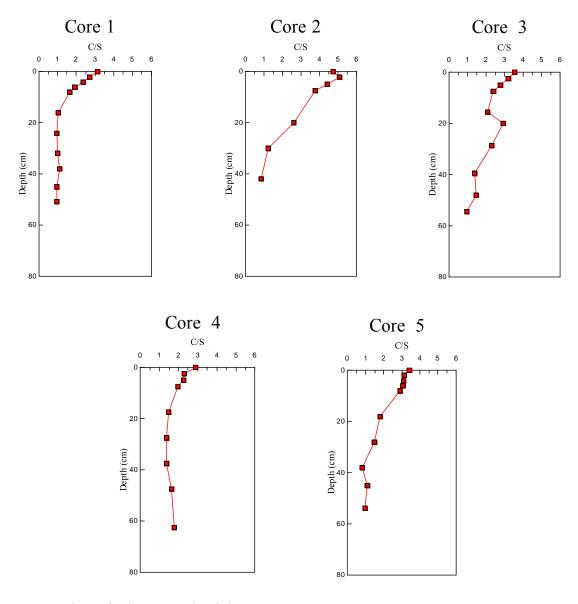


Figure 14. Plots of C/S versus depth in cores.

Metals

Correlation analysis indicate a very strong relationship between clay percent and Cr, Fe, Ni, and Zn contents in surficial sediments; correlation coefficients are 0.977, 0.974, 0.87, and 0.984 respectively. These metals typically are associated with clay minerals as they are either components of the mineral lattice structure or absorbed onto clay surfaces (Cantillo, 1982). Clay minerals make up a significantly large portion of the fine (clay size) sediment fraction. Likewise, carbon and nitrogen in the form of organic compounds is absorbed onto clay surfaces. The metal show an equally strong correlation with nitrogen. Three of these metals show a good relationship with carbon content, coefficients for Cr, Fe, and Zn are, 0..755, 0.764, and 0.768, respectively. Among the metals themselves, there are strong correlations between Fe and Cr (r = 0.994), Fe and

Zn (r= 0.991); Cr and Zn (r=0.995); Cr and Ni (r= 0.877) and Ni and Zn (r= 0.869).

Enrichment Factors

To reduce the effect of grain size, metal concentrations may be discussed in terms of enrichment factors (EF). The use of enrichment factors also allows for comparisons of sediments from different environments and the comparisons of sediments whose trace metal contents were obtained by different analytical techniques (Cantillo, 1982; Hill and others, 1990; Sinex and Helz, 1981).

Enrichment factor is defined as:

$$EF_{(X)} = \frac{(X/Fe)_{sample}}{(X/Fe)_{reference}}$$
(1)

where:

 $EF_{(x)}$ is the enrichment factor for the metal X; $X/Fe_{(sample)}$ is the ratio of the concentrations of metal X to Fe in the sample; $X/Fe_{(reference)}$ is the ratio of the concentrations of metal X to Fe in a reference material, such as an average crustal rock.

Fe is chosen as the element for normalizing because anthropogenic sources for Fe are small compared to natural sources (Helz, 1976). Taylor's (1964) average continental crust is used as the reference material. Average crustal abundance data may not be representative of the coastal bay sediments because there is a higher proportion of sand in the coastal bay sediments compared to the average crustal rock. However, abundance data is useful as a relative indicator. Also, Taylor's averages have been used in other studies involving coastal bays (Sinex and Helz, 1981).

Enrichment factors were calculated for the core sediments and plotted with depth. The core sediments are enriched with Cr and Zn with respect to Taylor's average continental crust, enrichment values averaging 1.45 for Cr and 2.01 for Zn. For the other metals, enrichment values are below one. When plotted with depth for each core, EF values for all metals except Zn show no discernable trends. On the other hand, all cores show a noticeable decrease in EF values for Zn (Figure 15). Plots of $EF_{(Zn)}$ with depth show values decrease with depth, leveling off to 1.75 - 1.5 at 20 to 25 cm below sediment surface in all most cores. This down-core decrease in $EF_{(Zn)}$ has been observed in most other cores collected in coastal bays for this study. Based on ²¹⁰ Pb sedimentation rates calculated for cores 1 and 5, Zn enrichment began to increase around 100 to

120 years ago (*i.e.* 20-30 cm below sediment surface). Sediments below this depth represent pristine or historical deposits (*i.e.* sediments deposited before anthropogenic influence).

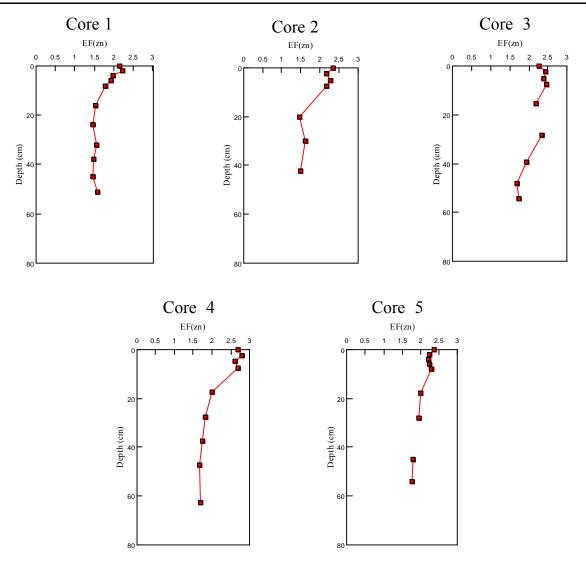


Figure 15. Plots of EF for Zn versus depth in cores.

Enrichment factors for the five metals were calculated for the surficial sediments. Middle Chincoteague Bay sediments are enriched in Cr and Zn with respect to crustal rock. The average enrichment factor values for Cr and Zn are 1.34 and 2.15, respectively. The surficial sediments are not enriched in Cu, Mn, and Ni relative to average crustal rock. EF values average less than one for Cu, Mn, and Ni (0.28, 0.74, and 0.54, respectively). The average EF values are very similar to those obtained for the upper Chincoteague, Sinepuxent, and Newport Bays. The low values for these three metals (Cu, Mn and Ni) simply mean that these metal are not as abundant in sediments in this area compared to *average crustal rock*.

Although enrichment factors are used to offset the effect of grain size, distribution of EF values for Cr, Cu and Mn show a general trend, relating to textural control over metal content.

The areas with the lowest EF values correspond to sandy sediments generally found in the mid-bay portion. Distributions of EF values for Ni and Zn reveal no discernable pattern.

Variation from Historical Norms

The "degree" of metal enrichment in sediments relative to a regional norm or historical levels can be assessed by correlating metal concentrations with grain size composition. By comparing predicted metal levels based on textural composition with metal levels actually measured in the sediments, variation or enrichment over background levels can be quantified. This technique has been very successful in monitoring subtle increases in metals in bottom sediments around the Hart-Miller Island dredge disposal site in Chesapeake Bay (Hennessee and others, 1990; Hill and others, 1990). Likewise, results from this technique has proven particularly sensitive in defining areas in Isle of Wight and Assawoman Bays that are enriched in Zn and Cu over background levels (Wells and others, 1994a, 1994b).

Based on the downcore decrease in Zn enrichment factor values, metal concentrations of sediments below the depth at which $EF_{(Zn)}$ values level off are interpreted to represent the historical, or background, norm for the study area. For the five cores collected for this study and two cores collected during the previous year's study (Wells and others, 1997: cores #3 and #4- see Figure 6), metal concentration values for the sediments having the low EF values, which, hereon, will be referred to as *historical sediments*, were fitted to the following equation:

$$X = a(SAND) + b(SILT) + c(CLAY)$$
⁽²⁾

where:

X is the metal of interest;

a, *b*, *and c* are the proportionality coefficients determined for the sand, silt and clay components, respectively; and

SAND, SILT, and CLAY are grain size fractions of the sediment sample.

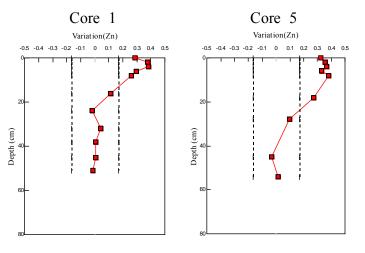
Using an algorithm developed by Marquardt (1963), least square coefficients were calculated. Data from the two cores collected during the previous year study were included to increase the number of samples used for the regression analyses for statistical purposes. The results are presented in Table IV. With the exception of Mn, the correlations are good for all of the metals, and are similar to those calculated for the Sinepuxent and Newport Bay data set (Wells and others, 1996), and upper Chincoteague Bay data set (Wells and others, 1997). The values for the coefficients indicate that clay fractions account for a significant portion of the metal concentrations measured in the sediments. The estimated coefficients for Mn indicate that the metal is not associated with any particular size fraction. For both Sinepuxent/Newport Bays and the two northern most bays, the clay fraction figured prominently in predicting Mn concentrations.

When regression analysis were preformed on a subset of the historical data set, including only those samples from cores collected in the Johnson Bay area (cores 1, 2, 3 and 5), estimates of coefficients for silt increased significantly for both Fe and Mn, becoming the dominant size fraction in predicting the concentration of those two metals. Estimates of coefficients for Fe were calculated as 0.49, 4.03, and 3.31, and for Mn were 122, 466, and 180 for sand, silt and clay respectively. The associations of Fe and Mn with the coarser size fraction are similar to those observed in the northern Chesapeake Bay and are attributed to grain coatings indicative of fresh water mixing.

Table IV. Least squares coefficients for metal data. Metal concentration values for the historical sediment set (see Table VI in Appendix I) were fitted to equation 2. The total number of samples used for regression analysis was 31 for each metal except copper. Twenty eight samples were used for regression analysis to obtain the estimates of coefficients for copper.

			Estimates of	of coefficients		
	Cr	Cu	Fe	Mn	Ni	Zn
SAND	29.33	0.25	1.00	211	4.90	19.81
SILT	53.41	0.03	2.01	335	12.28	19.57
CLAY	141.8	29.45	5.85	330	50.78	148.60
R ²	0.86	0.91	0.86	0.37	0.73	0.94

By substituting the least squares coefficients from Table IV in equation 2, "predicted" metal concentrations were calculated for the historical sediments. These predicted metal concentration values represent the expected historical levels of metals based on grain size composition of the sediment. To determine variations from historical norms, the predicted metal concentrations were compared to the measured values using equation 3. Negative values indicate depletion and positive values indicate enrichment relative to historical levels.


$$Variation_{X} = \left(\frac{Measured_{X} - Predicted_{X}}{Predicted_{X}}\right)$$
(3)

Variation values calculated for historical sediment set were analyzed according to Gaussian statistics. Variation values for all metals exhibit near-normal distributions with mean values close to zero. Mean variation values and standard deviations for each metal are presented in Table V. The standard deviation (σ or **sigma**) can be used to measure the significance of the variation values. For example, in a normal distribution, 68% of the values fall within 1 σ of the mean; 95.5% of the values fall within 2 σ of the mean. Values greater than 3 σ are considered significant beyond the normal, or background, population dispersion.

Table V. Mean and standard deviation (σ) of the variation values calculated for historical sediment set (from cores collected in the middle Chincoteague Bay). The mean and 3σ values are used to identify significantly low or high variation values calculated for modern sediments.

seaments.				
Metal	Mean	σ	2σ	3σ
Cr	-0.001	±0.082	±0.164	±0.245
Cu	-0.025	±0.159	±0.319	±0.478
Fe	0.000	±0.078	±0.157	±0.235
Mn	0.001	±0.109	±0.219	±0.328
Ni	-0.001	±0.172	±0.345	±0.517
Zn	-0.000	±0.056	±0.112	±0.168

Figure 16. Plots of variation values for Zn versus depth for cores 1 and 5. The dashed lines define the envelope of values within three standard deviations or sigma levels for the historical sediment set (see Table V). Variation values falling with the envelope (*i.e.*, three sigma units or less) are considered to be within normal background levels. Those values in the top of the core are greater that 3 sigma units and are considered significantly "enriched" above historical levels.

The variation values for each metal were calculated for all core sediments. Downcore plots for Cr, Fe, Mn and Ni variation values show no appreciable trends. For Cu, variation values decrease with depth in cores 1 through 4. However, Zn variation values decrease with depth in all cores. Zn variation values plotted against depth for cores 1 and 5 (Figure 16) show that values level off at 22 cm and 40 cm respectively, similar to the EF profiles (Figure 15).

The variation values were calculated for all surficial sediments. Most variation values for Cr, Cu, Fe, Mn, and Ni are within three standard deviations (three sigma units) from historical levels. The overall values calculated for this study area tend to be lower than those obtained for the upper Chincoteague Bay and Sinepuxent and Newport Bays. Variation values for Zn are higher, averaging 30% more than historical levels, with most values exceeding 3 sigma units.

Variation levels for Zn were mapped in terms of sigma units (Figure 17). Variation levels for Zn are greater than 6 sigma units above background for much of the study area, particularly in the western half. Variation levels greater than 9 sigma units were mapped in some areas such

as Taylor's Landing and in isolated pockets in Johnson Bay. The areas characterized by lower sigma levels (< 3 units) are restricted to the sandy area along the eastern margin. This area is subjected to periodic influx of coarser grained sediments either blown across Assateague Island, or wash over from the ocean. These coarser grained sediments do not contain appreciable amounts of Zn compared to the historical set. Distribution of variation levels for the other metals were not mapped because they did not exhibit any trends outside of the normal background behavior.

DISCUSSION

In the middle Chincoteague Bay, the distribution patterns of both textural and chemical characteristics observed in the bottom sediments reflect basin geometry, energy conditions and sediment source. Sediment is introduced into the study area through a number of processes. Fine sands and coarse silts are transported across Assateague Island by wind (eolian transport). During more severe weather, medium sand may be carried across the island as overwash. The overwash processes are restricted to those areas where the island is narrowest, such as the Green Run area. Elsewhere, the width of the island and development of a maritime forest prevent overwash from occurring, and to a lesser extend, minimize wind transport of sand except during the most severe weather events. In the past, a large quantity of sediment was transported into the bay when the Green Run inlet was open, which would account for some of the medium to coarse sand found today. It is doubtful, given the distance from Chincoteague Inlet, that sand coming through the inlet reaches the study area.

Most land-derived sediment is contributed through shoreline erosion. Because of the relatively small size of the streams and even smaller area of the watershed, fluvial contribution of sediments into the middle Chincoteague Bay is insignificant. Bartberger (1973) estimated that, for the entire Chincoteague Bay, the contribution of fine grained material from shore erosion is approximately eight times that introduced by streams. Shore erosion is also the source for coarser grained sediment. Sediment distribution map shows pockets of coarse grained sediment: sand, silty sand and sandy silt, associated with the islands in Johnson Bay. These islands, thought to be remnant Pleistocene beach ridges, are actively eroding and are a source of coarse grained sediments as well as some finer grained material. As material is eroded from the island shores, the finer grained portion is winnowed out leaving the sand in place. The fine grained portion is transported and deposited in sheltered areas where there is very little wave activity. Such areas include Johnson Bay, particularly on the west side of the islands (leeward side) and in the many channels in the Middlemoor complex.

Compared to the quantity of sediment eroded from the islands, mainland shoreline erosion is less significant (Table I). This is due to several factors. The mainland shore is sheltered from the direction of highest winds (fetch) and much of the shoreline is comprised of coastal marsh which tends to stabilize the shoreline.

The bayside of Assateague Island within the study area is also dominated by numerous islands of the Middlemoor complex. Many of these islands were formed when Green Run Inlet was formed, and continued to grow while the inlet was opened and provided a conduit for sediments from the ocean. Since 1900, when the inlet closed, many of the islands have undergone some erosion (Figure 6).

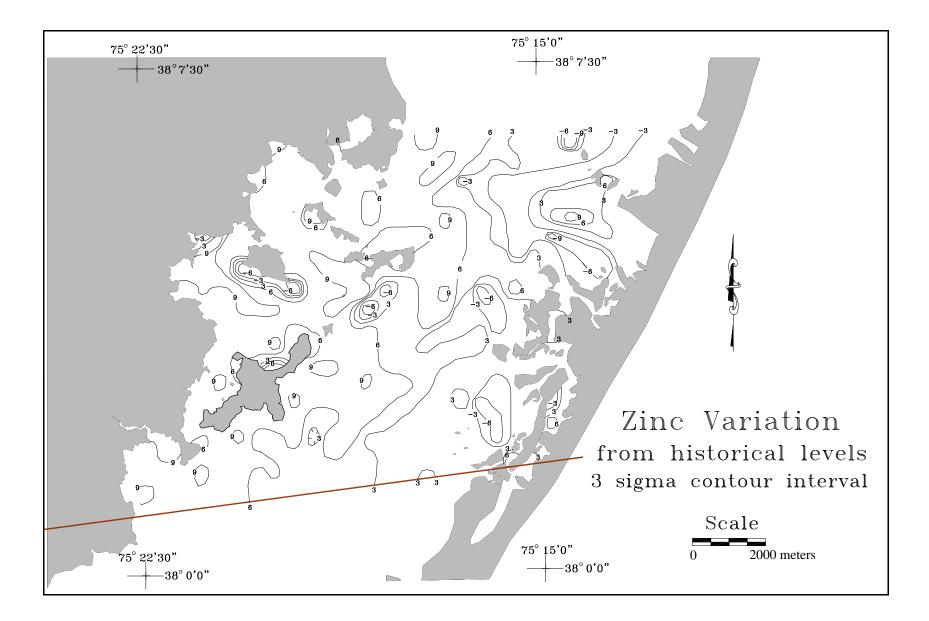
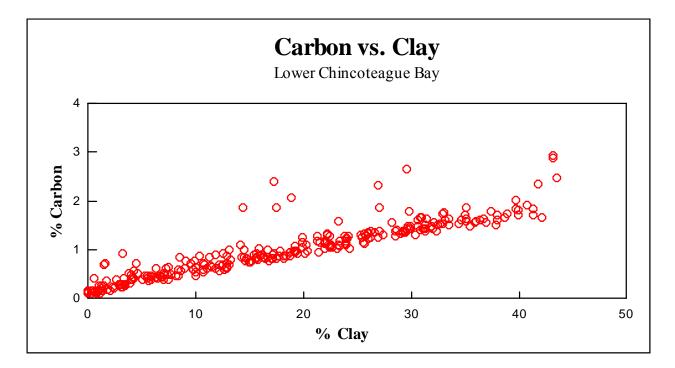


Figure 17. Distribution of sigma levels for Zn variation from historical levels in surficial sediments.

The sedimentation rates of 0.17 ± 0.08 and 0.25 ± 0.14 cm/yr based on ²¹⁰Pb activity for cores 1 and 5 are probably representative of the current rate accumulation of fine grained sediments in this portion of the Chincoteague Bay. Sedimentation rates will vary significantly depending on proximity to sediment source and depositional/erosional processes. Chrzastowski (1986) reported a wide range of sedimentation rates for Rehoboth and Indian River Bays based on bathymetric comparisons. Rates ranged from -0.04 cm/yr (erosion) to 1.47 cm/yr (accumulation) for the past 100 years. The highest sedimentation rates in Rehoboth and Indian River Bays were associated with the easterly sand dominated areas; illustrating the importance of ocean derived sediments, primarily through Indian River Inlet, but also those sediments carried (as overwash or blown by wind) across the barrier spits. The sedimentation rate in Sinepuxent Bay is very high as a result of the landward migration of Assateague Island. In contrast, sediment supply. Therefore, the sedimentation rates of 0.17 cm/yr and 0.25 cm/yr reported for the middle Chincoteague Bay as well as the rate of 0.14 cm/yr reported for Newport Bay (Wells and others, 1996) are reasonable.

Sedimentation rates will also vary over time as sediment source and processes change. Rates determined by 210 Pb reflect those accumulation rates for the top 20 to 30 cm of sediment column. Rates for smaller time periods vary significantly. The sedimentation rates calculated for 2 cm intervals for the top 10 to 12 cm in cores 1 and 5 range from 0.052 cm/yr to 0.389 cm/yr (Table VIII, Appendix I).


Carbon, sulfur and nitrogen contents measured in middle Chincoteague Bay are lower than the average values reported for Newport and Sinepuxent Bays and about half of those reported for Isle of Wight and Assawoman Bays. These relatively low values are attributed in part, to the low clay contents of sediments. The contents are however slightly higher than those reported for the upper Chincoteague Bay, the higher values attributed to slightly more clayey sediments found in the study area, particularly in the Johnson Bay area. Regression analysis of carbon versus clay show that, given the relatively low clay contents, total carbon for the middle Chincoteague Bay area is about 2/3 that of Sinepuxent and Newport Bay and 1/3 that of Isle of Wight and Assawoman Bays (Figure 18). The higher carbon reported for Isle of Wight and Assawoman Bays reflects "anthropogenic loading" with St. Martin River being the primary source of the loading (UM and CESI, 1993).

It should be noted in Figure 18 the sharp lower boundary of the data points in the plot. Clay content is a very good indicator of minimum values for clay content. For example, given a sediment consisting of 25% clay size particles, we can expect that sediment to contain at least 1.0% total carbon. The upper edge of the line of data points is not so well define. The data points above the regression line are those sediments containing amounts of carbon above what is expected. The additional amounts are attributed to an abundance of plant material such as those samples, noticeable in Figure 11 as the localized hot spots, collected in channels in Middlemoor complex. Other samples with higher than expected carbon contained abundant shell fragments which were not removed before analysis. Examples of these samples are those collected just south of Mills Island in an area where a remnant oyster bar was encountered. Overall, anthropogenic loading in the middle Chincoteague Bay is not a significant source of carbon.

The low N/C ratios in Chincoteague Bay indicate that carbon measured comes primarily from terrestrial or plant sources. The apparent deficit in planktonic carbon suggests that one of the following conditions may exist. 1) Primary productivity (planktonic production) is lower in Chincoteague Bay compared to the upper bays. 2) Primary productivity is the same but a portion of carbon (or organic matter) that accumulates on the bottom of the study area is actively being metabolized, leaving a higher proportion of inert carbon (*i.e.*, plant cellulose which contain very little nitrogen). The latter condition is most likely the process responsible for the low N/C ratios. Given the low sedimentation rates for this study area, any organic material settling to the bottom of the bay has a chance to be reworked or recycle before being buried.

Overall, EF values for surficial sediments collected for this study are lower than those calculated for the northern coastal bays. As with other areas in the coastal bays, the sediments in the middle Chincoteague Bay are not enriched in Cu, Mn, and Ni, relative to average crustal rock (*i.e.*, EF < 1) and slightly enriched in Cr, with EF values averaging 1.34. The sediments are also enriched in Zn, with EF values averaging 2.15. This average is slightly lower those obtained in the upper Chincoteague Bay and the northern coastal bays. Average EF values for Zn in the upper Chincoteague Bay were 2.25, for Sinepuxent and Newport Bays, 2.3, and for Isle of Wight and Assawoman Bays, 2.5. This overall enrichment in Zn is understandable. Zn is ubiquitous; it is the fourth most widely used industrial metal. Zinc is used as a protective coating on steel, particularly steel used in marine related industries. Therefore, some enrichment is expected even in seemingly pristine environments.

When metals are normalized to textural components and referenced to historical levels predicted for the study area, results indicate the same trends as with the enrichment factors. Cr, Cu, Fe, Mn, and Ni do not show no significant increase over historical levels within the study area. However, in a large portion of the study area, Zn shows up as "enriched" compared to older sediments. Zn is mapped at 3 to 6 sigma levels greater than historical levels throughout the western half of the study area, basically corresponding to finer grained sediments in deeper water . Similar levels were reported for Isle of Wight and Assawoman Bays. These levels of Zn represent a base level for modern sediments in this region, the bulk of the contamination attributed to atmospheric fallout based on metal behavior in the Chesapeake Bay (Sinex and others, 1981; Cantillo, 1982; and Helz and others, 1985). In the coastal bays, local "hot spots" characterized by levels of Zn higher than this base level are attributed to additional contamination from activities such as boating and the use of crab pots. The Johnson Bay area has been a popular area for crabbing and clamming. The area may be popular for recreational boating, but not at the level as in Isle of Wight and Assawoman Bays. Another possible source of the localized hot spots may be oysters which are common in this portion of Chincoteague Bay. Oysters tend to accumulate Zn in their soft tissue (Hill and Helz, 1973). When the oyster dies, the Zn is released into the sediment producing localized hot spots.

Figure 18. Total carbon versus clay for surficial sediments collected in the middle Chincoteague Bay (excluding samples 187 and 344 which were treated as outliers). Carbon content is most strongly associated with clay content. Linear regression of % total carbon (C_T) versus % clay is:

$$%C_T = 0.21 + 0.04(\% CLAY)$$
 $R^2 = 0.839$

This relationship is almost identical to that obtained for the data set from the upper Chincoteague Bay. Overall, the sediments collected in Chincoteague Bay contain about 2/3 the amount of carbon than those from Sinepuxent/Newport Bays and 1/3 the amount of carbon reported for Isle of Wight and Assawoman Bay.

The linear regression for % total carbon (C_T) versus % clay for Sinepuxent and Newport Bays is:

 $%C_T = 0.18 + 0.06(\% CLAY)$ $R^2 = 0.734$

and for Isle of Wight and Assawoman Bays is:

 $%C_T = 0.03 + 0.11(\% CLAY)$ $R^2 = 0.805$

The existence of Johnson Bay itself presents somewhat of a curiosity. The bay is shallow circular embayment along an otherwise straight trending mainland, and is not associated with any significant stream. All of the streams draining into the Johnson Bay are fairly short; the watershed for Johnson Bay is extremely narrow. Both the Beaverdam Sand and Ironshire Formations are absent in the Johnson Bay area; thus the Sinepuxent rests directly on top of the Yorktown Formation (Miocene) and abuts the Omar Formation. Johnson Bay feature corresponds to topographically low

feature that existed prior to the Holocene. During early Holocene, Johnson Bay area may have been an upland bog which eventually became flooded as sea level rose. This may explain the associations of Fe and Mn with the coarser size fraction observed in the historical data set taken from the cores collected for this study year. The associations are similar to those observed in the northern Chesapeake Bay and is attributed to grain coatings indicative of fresh water mixing (Helz and others, 1982; Hill and Parks, 1996). There may have been, sometime in the recent past (last 100 to 200 years), and may still be an influx of fresh water (via ground water flow) into Johnson Bay.

CONCLUSIONS

In the middle Chincoteague Bay, the distribution patterns of both textural and chemical characteristics observed in the bottom sediments reflect basin geometry, energy conditions and sediment source. Both fine grained and coarse grained sediments found in this portion of Chincoteague Bay are reworked material eroded primarily from the numerous islands in the Johnson Bay area and to a lesser extent, some islands of the Middlemoor complex. Both ocean derived and stream derived sediment are minor by comparison. The sedimentation rates obtained from two cores are low and most likely are representative of rates for fine grained lagoonal sediments in Chincoteague Bay.

The relatively low nitrogen, carbon and sulfur contents are related to textural composition of the sediments as well as overall energy conditions found within the study area. There is very little anthropogenic loading of nutrients in the middle Chincoteague Bay. The lower contents are related to energy conditions in the bay. The shallow water and the relatively coarse texture of the sediments (*i.e.* silty as opposed to clayey) contribute to conditions by which the bottom sediments are mixed and oxygenated. Therefore, much of the reactive carbon on the bottom is oxidized (*via* aerobic decay) before it can be buried, leaving a proportionately lower carbon content which is less reactive. With less carbon available for anaerobic decay, sulfur reduction is limited, accounting for the low sulfur contents. The remaining carbon consists of non-reactive material such as plant cellulose, which is lower in nitrogen compared to other organic material such planktonic debris (marine derived). This accounts for the low N/C ratios indicative of terrestrial (plant derived) carbon observed within the study area.

Metal data also indicate that the upper Chincoteague Bay is less influenced by anthropogenic activities compared to the northern coastal bays. Of the metals measured, Cr, Cu, Fe Mn, and Ni show no increase over calculated historical levels. The sediments are enriched in Zn, although not to the same levels reported for the northern coastal bays. Zn variation levels are greater than 3 sigma levels above historical levels for those areas covered with finer grained sediments. These levels reflect a regional influx of Zn, most likely from atmospheric input, and localized influx from commercial fishing activities.

ACKNOWLEDGMENTS

This study was funded by the Coastal Zone Management Program of the Maryland Department of Natural Resources pursuant to the National Oceanic and Atmospheric Administration award #NA67OZ0302. The authors extend their appreciation to Randall Kerhin, Richard Ortt, Ruth Anne Rhoads, and Meredith Robertson, who assisted with the collection of samples and cores, and to Paula Holzman and Stephanie Harris, who helped with the preparation of many sediment samples and conducted textural and NCS analyses. Special acknowledgment is given to Dr. Jeffrey Cornwell at Horn Point Environmental Labs for conducting the ²¹⁰Pb activity analyses. Special thanks are given to Al Wesche for his assistance in the collection of the cores and the use of his boat. Al's intimate knowledge of the coastal bays proved to be invaluable as it has been throughout this entire project.

REFERENCES CITED

- Allison, J.T., 1974 (revised March, 1975), Maryland Coastal Basin (02-13-01) existing water quality conditions: Water Resources Administration, Draft Report, Maryland Dept. of Natural Resources, Annapolis, MD.
- **Appleby, P.G. and F. Oldfield,** 1978, The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210-Pb to the sediment: Catena, v. 5, p. 1-8.
- **Bartberger, C.E.,** 1973, Origin, distribution, and rates of accumulation of sediments in Chincoteague Bay, Maryland and Virginia: M.S. Thesis for geology, Syracuse University, Syracuse, N.Y., 167 pp.
 - _____, 1976, Sediment sources and sedimentation rates, Chincoteague Bay, Maryland and Virginia: Journal of Sedimentary Petrology, v. 46, p. 326-336.
- Bartberger, C.E., and Biggs, R.B., 1970, Sedimentation in Chincoteague Bay: *in* Natural Resources Institute, University of Maryland, Oct. 1970, Assateague ecological studies, Part I: Environmental threats, Contribution #446, Chesapeake Biological Lab, Solomons, Md., 426 pp.
- **Berner, R.A.,** 1967, Diagenesis of iron sulfide in recent marine sediments, *in* Lauff, G., ed., Estuaries: Washington, D.C., American Association for the Advancement of Science Special Pub. 83, p. 268-272.

_____, 1970, Sedimentary pyrite formation: American Journal of Science, v. 268, p. 1-23.

- Berner, R.A., and Raiswell, R., 1984, C/S method for distinguishing freshwater from marine sedimentary rocks: Geology, v. 12, p. 365-368.
- **Berquist, C.R.**, 1994, Chemical analyses of offshore heavy mineral samples, Virginia inner continental shelf: Proceedings of Third Symposium on Studies Related to Continental Margins- Summary of Year Five and Year Six Activities, Minerals Management Service, Nov. 15-18, 1992, Austin, TX, p. 73-89.
- Biggs, R.B., 1970, The origin and geological history of Assateague Island, Maryland and Virginia, *in* Natural Resources Institute, University of Maryland, Oct. 1970, Assateague ecological studies, Part II: Environmental threats, Contribution #446, Chesapeake Biological Lab, Solomons, Md., p. 9-41.
- Casey, J., and Wesche, A., 1981, Marine benthic survey of Maryland's coastal bays: Part I. spring and summer periods, 1981: Maryland Dept. of Natural Resources, Annapolis, Md.
- **Cantillo, A.Y.,** 1982, Trace elements deposition histories in the Chesapeake Bay: Unpubl. Ph.D. dissertation, Chemistry Dept., Univ. of Maryland, College Park, MD, 298 p.

- **Cerco, C.F., Fang, C.S., and Rosenbaum, A.,** 1978, Intensive hydrographical and water quality survey of the Chincoteague/Sinepuxent/Assawoman Bay systems: Vol. III. Non-point source pollution studies in the Chincoteague Bay system, Special Sci. Report #86, Virginia Institute of Marine Sci., Gloucester Pt., Va.
- **Chaillou, J.C., and Weisberg, S.B.**, 1995, Assessment of the ecological condition of the Delaware and Maryland coastal bays: Final Report of the Coastal Bays Joint Assessment, submitted to U.S. EPA, Region III, Annapolis, Maryland.
- **Chrzastowski, M.J.,** 1986, Stratigraphy and geologic history of a Holocene lagoon: Rehoboth Bay and Indian River Bay, Delaware: Ph.D. dissertation, University of Delaware, Wilmington, Delaware, June, 1986, pp. 337.
- **Conkwright, R.D.,** 1975, Historical shorelines and erosion rates atlases, Maryland Geological Survey, Baltimore, MD, 4 volumes.
- **Cornwell, J.C., and Sampou, P.A.**, 1995, Environmental controls on iron sulfide mineral formation in a coastal plain estuary, *in* Vairavamurthy, M.A., and Schoonen, M.A.A., eds, Geochemical Transformations of Sedimentary Sulfur: ACS Symposium Series 612, Washington, D.C., p. 224-242.
- Fang, C.S., Rosenbaum, A., Jacobson, J.P., and Hyer, P.V., 1977, Intensive hydrographical and water quality survey of the Chincoteague/Sinepuxent/Assawoman Bay Systems, Vol. II. Data report: Intensive hydrographical and water quality: Special Scientific Report No. 82, Gloucester Point, Va., Virginia Institute of Marine Science.
- Fisher, J.J., 1967, Origin of barrier island chain shoreline, middle Atlantic states: Geological Society of America Special Paper 115, p. 66-67.
- Goldhaber, M.B., and Kaplan, I.R., 1974, The sulfur cycle, *in* Goldberg, E.D. (ed.), The Sea, Volume 5, Marine Chemistry: New York, Wiley-Interscience, p. 569-655.
- Helz, G.R., 1976, Trace element inventory for the northern Chesapeake Bay with emphasis on the influence of man: Geochimica et Cosmochimica Acta, v. 40, p. 573-580.
- Helz, G.R., Sinex, S.A., Serlock, G.H., and Cantillo, A.Y., 1982, Chesapeake Bay sediment trace elements: Final Report to U.S. Environmental Protection Agency, Grant No. R805954, Univ. of Maryland, College Park, Md., 202 pp.
- Helz, G.R., Sinex, S.A., Ferri, K.L., and Nichols, M., 1985, Processes controlling Fe, Mn and Zn in sediments of northern Chesapeake Bay: Estuarine, Coastal and Shelf Science, vol. 21, p. 1-116.
- Hennessee, E.L., Cuthbertson, R.H., and Hill, J.M., 1990, Sedimentary environment, in Assessment of the Environmental Impacts of the Hart and Miller Islands Containment Facility: 8th Annual Interpretive Report Aug. 1988 Aug. 1989: Annapolis, MD, Maryland

Dept. of Natural Resources, Tidewater Admin., p. 20-94.

- Hill, J. M., Park, J., and Panageotou, W., 1997, Poplar Island Baseline Survey: Sediment Quality Monitoring: Coastal and Estuarine Geology File Report 97-3, Maryland Geological Survey, 34 pp.
- Hill, J. M., and Park, J., 1996, Pollution history of the Chesapeake Bay: trace metal and nutrient study: Coastal and Estuarine Geology File Report 96-4, Maryland Geological Survey, Baltimore, Md.
- Hill, J.M., Halka, J.P., Conkwright, R., Koczot, K., and Colman, S., 1992, Distribution and effects of shallow gas on bulk estuarine sediment properties: Continental Shelf Research, v. 12, no. 10, pp. 1219-1229.
- Hill, J.M., Hennessee, E.L., Park, M.J., and Wells, D.V., 1990, Interpretive techniques for assessing temporal variability of trace metal levels in estuarine sediments (Abst): Goldschmidt Conference, Hunt Valley, Md.
- Hill, J.M., and Helz, G.R., 1973, Copper and zinc in estuarine waters near a coal-fired electric power plant correlation with oyster greening: Environmental Letters, vol. 5, pp. 165-174.
- Johnson, R.A. and Wichern, D.W., 1982, Applied multivariate statistical analysis: New Jersey, Prentice-Hall.
- Kerhin, R.T., Halka, J.P., Wells, D.V., Hennessee, E.L., Blakeslee, P.J., Zoltan, N., and Cuthbertson, R.H., 1988, The surficial sediments of Chesapeake Bay, Maryland: physical characteristics and sediment budget: Maryland Geological Survey Report of Investigation 48, 82 p., 8 plates.
- Marquardt, D.W., 1963, An algorithm for least squares estimation of nonlinear parameters: Journal of Society for Industrial and Applied Mathematics, v. 11, p. 431-441.
- **Owens, J.P., and Denny, C.S.,** 1978, Geologic map of Worcester County, scale 1:62,500: Maryland Geological Survey, color county geologic map with text.

______,1979, Upper Cenozoic deposits of the Central Delmarva Peninsula, Maryland and Delaware: U.S. Geological Survey Professional Paper 1067-A, 28 p.

- **Pritchard, D.W.**, 1960, Salt balance and exchange rate for Chincoteague Bay: Chesapeake Science, vol. 1, p. 48-57.
- Rasmussen, W.C., and Slaughter, T.H., 1955, The water resources of Somerset, Wicomico, and Worcester counties: Maryland Geological Survey Bull. 16, 533 p.
- Redfield, A.C., Ketchum, B.H., and Richards, F.A., 1963, The influence of organisms on the composition of sea-water, *in* Hill, M.N. (ed.), The Sea, Volume 2, The Composition of Sea-

water, Comparative and Descriptive Oceanography: London, Interscience, p. 26-77.

- Reinharz, E., and O'Connell, A.E., 1981, Animal-sediment relationships of the upper and central Chesapeake Bay: Final Report to the U. S. Environmental Protection Agency (EPA Grant No. R805964): Baltimore, MD, Maryland Geological Survey, 71 p.
- Shepard, F.P., 1954, Nomenclature based on sand-silt-clay ratios: Journal of Sedimentary Petrology, v. 24, p. 151-158.
- Sieling, F.W., 1958, Low salinity and unusual biological conditions noted in Chincoteague Bay: Maryland Tidewater News, v. 14, no. 4, p. 15-16.
 - , 1959, Chemical and physical data, Chincoteague Bay area, June 1953- December, 1956: Maryland Dept. of Research and Education, Univ. of Md. Chesapeake Biological Lab., Solomons, Md., reference 57-25, p. 93.
 - ______, 1960, The resources of Worcester County coastal waters: Maryland Dept. of Research and Education, Univ. of Md. Chesapeake Biological Lab., Solomons, Md., reference 60-27.
- Sinex, S.A., and Helz, G.R., 1981, Regional geochemistry of trace elements in Chesapeake Bay sediments: Environmental Geology, v. 3, p. 315-323.
- Singewald, J.T., and Slaughter, T.H., 1949, Shore Erosion in Tidewater Maryland: Maryland Department of Geology, Mines, and Mineral Resources, Baltimore, MD, Bulletin 6, 141 p.
- **Taylor, S.R.,** 1964, The abundance of chemical elements in the continental crusts- a new table: Geochimica et Cosmochimica Acta, v. 28, p. 283-294.
- **Toscano, M.A.,** 1992, Record of Oxygen Isotope Stage 5 on the Maryland inner shelf Atlantic Coastal Plain- A post-transgressive-highstand regime, *in* Wehmiller, J.F. and Fletcher, C.H. (eds.), Quaternary Coasts of the United States: Lacustrine and Marine Systems: Society of Economic Paleontologists and Mineralogists (SEPM) Special Publication No. 48, p. 89-99.
- **Toscano, M.A., Kerhin, R.T., York, L. L., Cronin, T. M., and Williams, S. J.,** 1989, Quaternary stratigraphy of the inner continental shelf of Maryland: Baltimore, Md., Maryland Geological Survey Report of Investigation 50, 117 pp.
- **Toscano, M.A. and York, L. L.,** 1992, Quaternary stratigraphy and sea-level history of the U.S. middle Atlantic Coastal Plain: Quaternary Science Review, v. 11, p. 301-328.
- University of Md. (UM), and Coastal Environmental Services, Inc. (CESI), 1993, Maryland's coastal bays: an assessment of aquatic ecosystems, pollutant loadings, and management options: submitted to Maryland Dept. of the Environment, Chesapeake Bay and Special Projects Branch, Baltimore, Md.

- Van Loon, J.C., 1980, Analytical Atomic Absorption Spectroscopy: Selected Methods: Academic Press, New York, 337 pp.
- Wells, D.V., Conkwright, R.D., and Park, J., 1994a, Geochemistry and geophysical framework of the shallow sediments of Assawoman Bay and Isle of Wight Bay in Maryland: Maryland Geological Survey Open File Report No. 15, Baltimore, Md., 125 pp.
- Wells, D.V., Conkwright, R.D.,Hill, J.M., and Park, J., 1994b, The surficial sediments of Assawoman Bay and Isle of Wight Bay in Maryland: physical and chemical characteristics: Coastal and Estuarine Geology File Report No. 94-2, Maryland Geological Survey, Baltimore, Md., 99 pp.
- Wells, D.V., Conkwright, R.D., Gast, R., Hill, J.M., and Park, J., 1996, The shallow sediments of Newport Bay and Sinepuxent Bay in Maryland: physical and chemical characteristics: Coastal and Estuarine Geology File Report No. 96-2, Maryland Geological Survey, Baltimore, Md., 116 pp.
- Wells, D.V., Harris, S.M., Hill, J.M., Park, J., and Williams, C.P., 1997, The shallow sediments of the upper Chincoteague Bay area in Maryland: physical and chemical characteristics: Coastal and Estuarine Geology File Report No. 97-2, Maryland Geological Survey, Baltimore, Md., 90 pp.

Appendix I - Sediment Core Data

- Lithologic logs for sediment cores collected in the middle Chincoteague Bay area
- Textural and chemical data for core samples
- ²¹⁰Pb activity data for sediment samples from Cores 1 and 5

Lithologic logs and xeroradiographs for sediment cores collected in the middle Chincoteague Bay area. Geographic coordinates and general information for coring stations are included. Sediment color descriptions for both core sediments and surficial sediments (see Appendix II) are referenced to the GSA Rock-Color Chart which is based on the Munsell system of color identification. Latitude: 38° 05' 05.64" N Longitude: 075° 17' 21.01" W Date: 5/29/97 Water Depth: 1.83 meters Core Type: Gravity core Core Length: 51 cm

Depth (cm)	Description	Xero-radiograph
0 - 0.3	Olive grey (5Y 4/1) oxidized mud, some plant material	°.
0.3 - 10	Mottled greenish black (5G 2/1) to dark greenish grey (5G 4/1) watery mud	Y

10 - 35 Dark greenish grey (5G 4/1), more compact (less watery) mud, plant rhizome casts filled with oxidized mud and brown (5YR 3/4) peat, rhizomes extend from 11.5 cm to 18 cm, large burrow filled with dark greenish black (5G 2/1) mud, shell fragments at 11 cm and 35 cm

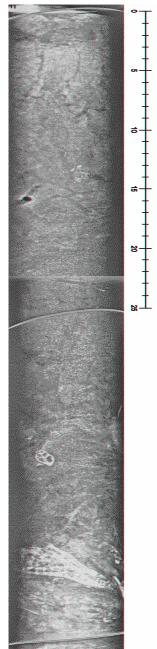
35 - 51 Dark greenish grey (5GY 4/1) firm, uniform mud, occasional peat strings (rhizome casts) throughout section, strong H_2S odor toward bottom of core

Core 2 Johnson Bay

	3° 04' 04.11" N 075° 20' 49.79" W 97	Water Depth: 1.37 meters Core Type: Gravity core Core Length: 44.5 cm	
Depth (cm)	Description		Xero-radiograph
0 -12	Dark greenish grey burrow extending	7 (5G 5/1) firm mud, large oxidized to 7 cm	•

12 - 36 Greenish grey (5G 2/1) more watery, mud, water content increases down section, large oyster shells at 12 to 20 cm and 25 to 29 cm, slight H2S odor at 30-32.5 cm

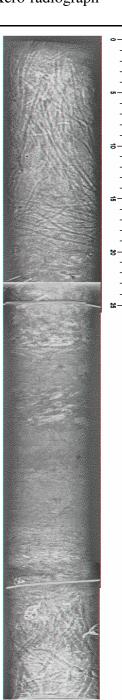
36 - 44.5 Greenish grey (5G 2/1) watery, mud, shell fragments throughout



Core 3 Chincoteague Bay

Latitude:38° Longitude:07 Date: 5/20/97	'5° 21' 15.77" W	Water Depth: 2.13 m Core Type: Gravity core Core Length: 57.5 cm	
Depth (cm)	Description		Xero-radiograph
0 - 0.5 0.5 - 18	Olive grey (5Y 4/1 Mottled dark green darker greenish gre	ish grey (5GY 4/1) firm mud with	

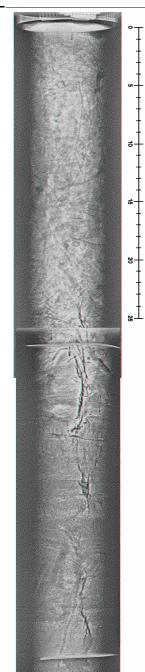
18 - 46 Dark greenish grey very firm silty mud, very large burrow filled with very watery greenish black(5G 2/1), very smooth cohesive mud, containing little (~ 1 mm) clay balls (Note: muddy fill shows up in radiograph as granular), no H2S odor, large burrow truncated by large fragment of oyster shell at 46 cm, *Nassarius sp.* at 35 cm


46 - 57.5 Dark greenish grey (5GY 4/1) very firm mud, some shell hash throughout, slight H₂S odor at bottom of core

Core 4 Green Run Bay

Latitude:38° 05' 10.91" N Water Depth: 1.98 m Core Type: Gravity core Longitude:075° 14' 24.20" W Core Length: 63 cm Date: 5/29/97 Description Xero-radiograph Depth (cm) 0 - 0.5 Olive grey (5Y 4/1) oxidized silty mud, worm tubes on top 0.5 - 24 Mottled greenish black (5G 2/1) to dark greenish grey (5G 4/1) somewhat firm mud, more watery at 4 to 7 cm (may be large filled burrow as indicated in radiograph)

24 - 63 Greenish black (5G 2/1) firm micaceous mud, occasional small shell fragment, H₂S odor, water content decreases with depth, very stiff mud at bottom of core, *Nassarius sp.* at 55 cm



Core 5 Chincoteague Bay

Latitude: 38° Longitude: 07 Date: 5/29/97	75° 18' 57.69" W	Water Depth: 1.98 Core Type: Gravity core Core Length: 58 cm	
Depth (cm)	Description		Xero-radiograph
0 - 0.3 0.3 - 15	(5G 2/1), somewhat v	vatery silty mud h grey (5GY 4/1) to greenish black watery mud, large burrow extending l with darker, more watery and siltier	

15 - 34 Mottled, dark greenish grey (5GY4/1) to greenish black 5GY 2/1) firm mud, some oxidized plant material scattered throughout

34 - 58 Dark greenish grey (5G 4/1) firm silty mud

Tabl	e VI.	Textu	al and c	chemica	l data f	or core	sample	s. Samples	include	d in the	histori	cal data	set are b	olded			
	Sample	Interval			Tex	tural Data						С	hemical Data	a			
Core	Upper (cm)	Lower (cm)	Water (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Shepard's (1954) Classification	Nitrogen (%)	Carbon (%)	Sulfur (%)	Cr (µg/g)	Cu (µg/g)	Fe (%)	Mn (µg/g)	Ni (µg/g)	Zn (µg/g)
C1	0	2	32.35	0	17.69	68.00	14.30	Sandy-Silt	0.07	0.88	0.28	40.8	6.8	1.82	184	15.9	48.9
C1	2	4	33.09	0	17.55	67.08	15.37	Sandy-Silt	0.07	0.96	0.35	44.4	7.7	1.96	196	16.6	54.4
C1	4	6	33.90	0	16.53	65.93	17.54	Clayey-Silt	0.08	1.26	0.53	54.0	9.7	2.38	243	15.9	58.5
C1	6	8	34.13	0	16.44	63.01	20.55	Clayey-Silt	0.09	1.35	0.71	57.9	11.6	2.51	234	18.6	59.8
C1	8	10	36.96	0	11.65	61.89	26.46	Clayey-Silt	0.10	1.41	0.86	67.9	9.9	3.05	288	20.5	67.9
C1	10	12	38.54														
C1	12	14	42.28														
C1	14	16	41.94														
C1	16	18	42.56	0	3.64	62.06	34.29	Clayey-Silt	0.10	1.44	1.38	80.1	12.6	3.71	358	24.3	71.1
C1	18	20	44.40														
C1	20	22	44.61														
C1	22	24	44.71														
C1	24	26	46.07	0	1.73	56.60	41.66	Clayey-Silt	0.10	1.37	1.47	88.7	13.0	3.96	389	27.9	72.1
C1	26	28	43.62														
C1	28	30	43.52														
C1	30	32	42.73														
C1	32	34	42.46	0	1.06	59.94	38.99	Clayey-Silt	0.09	1.18	1.19	86.4	12.3	3.78	367	30.8	73.0
C1	34	36	43.15														ļ
C1	36	38	45.36														
C1	38	40	48.10	0	1.27	61.90	36.83	Clayey-Silt	0.10	1.52	1.35	80.7	10.8	3.69	355	28.4	67.5
C1	45	47	44.08	0	1.16	63.67	35.17	Clayey-Silt	0.09	1.33	1.37	83.0	10.3	3.64	335	30.9	65.5
C1	51	53	44.47	0	0.46	57.96	41.58	Clayey-Silt	0.11	1.44	1.48	90.8	11.6	3.68	337	29.4	72.4
C2	0	2.5	37.90	0	13.53	57.84	28.63	Clayey-Silt	0.12	1.45	0.31	73.1	12.2	2.97	237	28.0	87.1
C2	2.2	5	37.97	0	13.06	55.12	31.82	Clayey-Silt	0.12	1.44	0.28	76.4	12.4	3.15	259	26.0	85.5
C2	5	7.5	38.97	0	13.14	54.46	32.40	Clayey-Silt	0.12	1.45	0.33	77.2	12.1	3.19	262	24.8	90.0
C2	7.5	10	38.63	0	12.68	52.33	34.99	Clayey-Silt	0.12	1.44	0.38	79.7	12.3	3.24	262	27.3	87.7
C2	20	22.5	34.69	0	22.56	45.79	31.64	Sand-Silt-Clay	0.08	1.96	0.75	64.1	9.6	2.85	300	16.4	52.3
C2	30	32.5	45.53	0	21.73	43.54	34.72	Sand-Silt-Clay	0.09	1.08	0.87	77.1	9.1	3.22	327	24.4	65.1
C2 C3	42 0	44.5 2.5	37.49	0 0	28.38	41.21	30.41	Sand-Silt-Clay	0.06	0.78	0.94	68.0 92.8	8.0	3.02	263	18.6	56.1 93.9
C3		2.5 5	44.32 39.07	0	11.64	56.63	31.74	Clayey-Silt	0.13	1.49	0.42	92.8 78.0	12.0	3.32 2.78	321	24.1	
03	2.5	3	39.07	0	10.36	57.56	32.08	Clayey-Silt	0.12	1.43	0.45	/8.0	12.4	2.78	252	21.8	84.1

F

Tabl	e VI.	Textur	al and c	chemica	l data fo	or core	sample	s. Samples	include	d in the	historio	cal data	set are b	olded	•		
	Sample	Interval			Tex	tural Data	-					С	hemical Data	ı			
Core	Upper (cm)	Lower (cm)	Water (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Shepard's (1954) Classification	Nitrogen (%)	Carbon (%)	Sulfur (%)	Cr (µg/g)	Cu (µg/g)	Fe (%)	Mn (µg/g)	Ni (µg/g)	Zn (µg/g)
C3	5	7.5	39.76	0	10.03	58.74	31.23	Clayey-Silt	0.11	1.40	0.50	77.0	12.4	2.70	256	20.2	80.6
C3	7.5	10	41.15	0	9.75	56.40	33.85	Clayey-Silt	0.13	1.59	0.67	89.8	13.8	3.05	267	21.5	93.7
C3	15.5	18	41.27	0	9.09	52.50	38.40	Clayey-Silt	0.13	1.53	0.74	91.7	13.6	3.26	286	25.5	88.7
C3	20	27	51.46	0	2.70	46.43	50.87	Silty-Clay	0.17	2.04	0.69						
C3	28.5	31	49.55	0	9.33	49.03	41.63	Clayey-Silt	0.15	1.82	0.79	107.6	15.1	3.57	323	28.4	103.7
C3	39.5	42	40.64	0	19.15	44.35	36.50	Clayey-Silt	0.10	1.29	0.94	80.9	11.0	2.95	273	25.4	70.7
C3	48	50.5	32.65	0	35.74	39.66	24.60	Sand-Silt-Clay	0.06	1.11	0.75	71.2	7.6	2.53	280	16.2	53.3
C3	54.5	57	36.32	0	25.47	45.58	28.95	Sand-Silt-Clay	0.07	0.93	0.96	75.5	10.2	2.84	291	21.4	61.6
C4	0	2.5	43.16	0	26.90	51.06	22.04	Sand-Silt-Clay	0.12	1.33	0.46	62.7	9.8	2.19	214	16.5	73.3
C4	2.5	5	38.12	0	28.59	50.46	20.95	Sand-Silt-Clay	0.10	1.05	0.45	50.5	8.1	1.81	171	16.3	62.8
C4	5	7.5	34.69	0	32.78	52.39	14.83	Sandy-Silt	0.09	1.01	0.45	52.9	8.4	1.87	199	16.5	60.3
C4	7.5	10	34.89	0	28.18	52.24	19.58	Sandy-Silt	0.10	1.08	0.55	56.3	9.8	2.01	197	16.8	66.9
C4	17.5	20	36.87	0	19.89	55.13	24.97	Clayey-Silt	0.11	1.30	0.88	69.0	9.8	2.49	279	19.2	61.7
C4	27.5	30	48.19	0	4.86	61.33	33.81	Clayey-Silt	0.15	1.64	1.19	81.7	11.1	2.91	297	22.8	65.5
C4	37.5	40	49.38	0	2.68	57.40	39.92	Clayey-Silt	0.15	1.69	1.24	85.2	12.3	3.07	270	21.1	66.6
C4	47.5	50	46.65	0	16.34	55.39	28.27	Clayey-Silt	0.13	1.68	1.02	70.5	8.3	2.61	239	17.3	54.0
C4	62.5	65	35.47	0	28.13	51.42	20.44	Sand-Silt-Clay	0.10	1.26	0.70	53.1	7.2	2.11	219	15.4	44.6
C5	0	2	36.05	0	13.80	63.90	22.31	Clayey-Silt	0.09	1.08	0.32	56.9	7.7	2.18	218	16.7	64.0
C5	2	4	35.05	0	16.85	63.41	19.74	Clayey-Silt	0.08	1.11	0.36	55.2	8.1	2.19	213	14.2	61.2
C5	4	6	35.14	0	17.24	63.44	19.33	Clayey-Silt	0.09	1.17	0.38	57.9	8.1	2.22	230	14.6	60.8
C5	6	8	30.75	0	17.14	62.12	20.74	Clayey-Silt	0.08	1.11	0.36	56.0	7.6	2.21	218	14.4	61.6
C5	8	10	33.42	0	16.36	60.51	23.12	Clayey-Silt	0.09	1.21	0.41	65.6	9.1	2.41	251	23.8	68.2
C5	10	12	35.12												ļ		
C5	12	14	33.60														
C5	14	16	34.68														
C5	16	18	33.38														
C5	18	20	33.47	0	16.31	61.14	22.55	Clayey-Silt	0.09	1.13	0.63	66.8	12.0	2.48	235	26.5	61.9
C5	20	22	32.51														
C5	22	24	35.24														
C5	24	26	37.59														
C5	26	28	39.31														

F

Tabl	e VI.	Textur	al and c	chemica	l data f	or core	samples	s. Samples	include	d in the	historic	cal data	set are b	olded.			
	Sample	Interval			Tex	tural Data						С	hemical Data	a			
Core	Upper (cm)	Lower (cm)	Water (%)	Gravel (%)	Sand (%)	Silt (%)	Clay (%)	Shepard's (1954) Classification	Nitrogen (%)	Carbon (%)	Sulfur (%)	Cr (µg/g)	Cu (µg/g)	Fe (%)	Mn (µg/g)	Ni (µg/g)	Zn (µg/g)
C5	28	30	41.39	0	6.61	53.45	39.94	Clayey-Silt	0.10	1.29	0.88	95.4	12.6	3.23	307	30.5	78.0
C5	30	32	39.12														
C5	32	34	45.35														
C5	34	36	46.37														
C5	36	38	46.47														
C5	38	40	48.60	0	1.61	50.59	47.80	Clayey-Silt	0.11	1.38	1.70						
C5	45	47	40.81	0	4.12	51.64	44.24	Clayey-Silt	0.10	1.40	1.28	93.1	12.6	3.32	311	28.1	74.2
C5	54	56	45.81	0	2.56	52.28	45.16	Clayey-Silt	0.11	1.37	1.44	97.1	12.7	3.62	311	33.4	79.1

²¹⁰ Pb-based sedimentation rate for cores 1 and 5

Sediment samples were taken from cores 1 and 5 at 2 cm intervals (other cores were sampled at 2.5 cm intervals). Samples were analyzed for water content (see **Methods** in main report). A two gram sub-samples was split from the dried water content sample, and sent to the University of Maryland, Horn Point Environmental Laboratory. The samples were analyzed by Dr. Jeffrey Cornwell, who also calculated the sedimentation rate from the ²¹⁰ Pb activity data. The activity data which, in this case, are values for ²¹⁰Po which is in secular equilibrium with ²¹⁰Pb, are presented in Table VII. Activity values are reported as **d**isintegrations **per m**inute per **g**ram or **dpm/g**.

Table VII.	²¹⁰ Pb activity	data for sedim	nent	s from cores 1	and 5.	
Core 1 Depth (cm)	²¹⁰ Po Activity (dpm g ⁻¹)	Counting Error		Core 5 Depth (cm)	²¹⁰ Po Activity (dpm g ⁻¹)	Counting Error
0-2	1.49	0.06		0-2	1.89	0.08
2-4	1.33	0.06		2-4	1.70	0.07
4-6	1.42	0.09		4-6	1.61	0.09
6-8	1.24	0.05		6-8	1.42	0.06
8-10	1.21	0.08		12-14	1.55	0.07
10-12	1.16	0.08		14-16	1.43	0.06
12-14	0.90	0.04		16-18	1.24	0.05
18-20	0.73	0.02		18-20	0.70	0.12
28-30	0.68	0.05		22-24	0.66	0.03
38-40	0.63	0.05		28-30	0.71	0.10
51-53	0.66	0.05		38-40	0.36	0.09
				45-47	0.69	0.04
				54-56	0.83	0.18

Based on downcore profiles of 210 Po activity values, an average sedimentation rates for the top of the cores were calculated to be 0.17 ± 0.08 and 0.25 ± 0.14 cm yr⁻¹ for cores 1 and 5 respectively. The rates were calculated using the CRS (Constant Rate of Supply) model for sedimentation. In the CRS model, it is assumed that 210 Pb fluxes into the sediment are constant, but the flux of sediment particles may be variable (Appleby and Oldfield, 1978). By determining a time for each sediment interval, the sedimentation rate can be determine throughout the core

(Table VIII).

Table VII model.	I. Interval	ages and sec	limentation	n ra	ates for cores	1 and 5, calo	culated by th	ne CRS	
Core 1 Depth	Age (yr)		Accretion Rate (cm/yr)		Core 5 Depth	Age (yr)	Accretion Rate (cm/yr)		
(cm)		Wet	Dry		(cm)		Wet	Dry	
2	7.8	0.257	0.170		2	5.1	0.389	0.247	
4	15.6	0.255	0.166		4	10.4	0.383	0.246	
6	27.5	0.169	0.110		6	16.0	0.353	0.226	
8	40.5	0.153	0.099		8	22.4	0.330	0.222	
10	59.2	0.107	0.068		12	40.5	0.109	0.070	
12	97.6	0.052	0.032		14	57.1	0.120	0.078	
					16	83.6	0.076	0.049	
Ave	Average		0.11		Avera	age	0.25	0.16	

Appendix II- Surficial Sediment Data

- Location data and field descriptions for surficial samples
- Textural and chemical data for surficial samples

		Latitude	2		Longitu	de		
Station #	DD	MM	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
								Dark greenish grey (5 GY 4/1) mottled with darker grey, muddy, fine sand, plant
3	38	6	20.34	75	17	28.55	1.8	fragments, worm tubes, worm, algae
4	38	6	18.84	75	17	8.52	2.3	Dark greenish grey (5 GY 4/1), slightly gritty mud, reddish brown floc, worm tubes, she
5	38	6	19.27	75	16	47.24	2.4	Greenish black (5 GY 2/1), very slightly gritty mud, worm tubes, arthropods
6	38	6	18.17	75	16	27.69	2.3	Dark greenish grey (5 GY 4/1), slightly gritty gelatinous mud, darkens with depth, lots o worm tubes
7	38	6	17.59	75	16	6.68	2.1	Olive grey (5 Y 4/1), cohesive gelatinous firm gritty mud, worm tubes, worm, <i>Zostera marina</i> , algae
8	38	6	17.44	75	15	46.08	2.1	Olive grey (5 Y 4/1), very fine sandy mud, few worm tubes, some shells
9	38	6	17.32	75	15	26.91	1.8	Olive grey (5 Y 4/1), muddy sand, some grass, SAV, worm tubes, shell fragments
10	38	6	16.02	75	15	5.18	1.8	Dark greenish grey (5 GY 4/1) mottled with olive grey (5 Y 4/1), muddy very fine sand, SAV, worm tubes, worm, live shells (<i>Gemma gemma</i>), polychaete
11	38	6	15.61	75	14	44.58	1.5	Olive grey (5 Y 4/1), muddy very fine sand, green seaweed on top of some shells (<i>Gemma gemma</i>), stringy algae
12	38	6	15.53	75	14	24.88	0.9	Brownish grey (5 YR 4/1) to olive grey (5 Y 4/1), fine to very fine sand, live shells
13	38	6	15.85	75	14	2.83	0.9	Brownish grey (5 YR 4/1), very fine sand, grey seaweed attached to shells, gastropod shells and fragments, <i>Gemma gemma</i> , worms
14	38	6	14.51	75	13	41.19	1.8	Olive grey (5 Y 4/1), stiff hard sand with shells, worm tube, shell fragments, some mud
15	38	6	14.65	75	13	20.95	0.9	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 3/1), very fine to fine sand, fairly clear sand, lots of shells, <i>Gemma gemma</i>
16	38	6	14.56	75	13	0.30	0.6	Olive grey (5 Y 4/1), very fine sand, lots of worm tubes, grass (Zostera marina)
17	38	5	58.57	75	13	0.41	0.6	Light olive grey (5 Y 5/2) to olive grey (5 Y 3/2), fine sand, grass shrimp, shell fragments
18	38	5	56.33	75	13	21.36	1.5	Olive grey (5 Y 4/1), very fine sand, lots of shellfragments, approximately 40 m south edge of <i>Zostera marina</i> bed
19	38	5	59.03	75	13	42.59	0.6	Olive grey (5 Y 4/1), fine to very fine sand, fairly clean, Zostera marina bed
20	38	5	59.76	75	14	24.20	0.8	Light olive grey (5 Y 5/2), fine sand, few worm tubes, very small shells and shell fragments

Table IX. Location coordinates and field descriptions of surficial samples collected in the in the middle Chincoteague Bay area.

I

Station #	Latitude			Longitude				
	DD	MM	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
21	38	6	0.23	75	14	44.59	0.9	Olive grey (5 Y 4/1), fine to very fine sand, turning brown and olive black (5 Y 2/1) with depth, pretty stiff, small live shells (<i>Gemma gemma</i>)
22	38	5	59.93	75	15	5.37	1.5	Olive grey (5 Y 4/1), muddy fine sand, turning olive black (5 Y 2/1) with depth, green seaweed
23	38	6	0.66	75	15	25.96	1.5	Greenish black (5 GY 2/1), muddy fine to very fine sand, worm tubes, small shell fragments, including scallop shell fragments
24	38	6	0.68	75	15	46.73	1.7	Dark greenish grey (5 GY 4/1), muddy very fine sand, olive grey (5 Y 4/1) floc, confusing brown seaweed, worm tubes
25	38	6	1.24	75	16	6.58	2.1	Olive grey(5 Y 4/1), curdled or cottage cheese texture, muddy very fine sand, worm tubes, shell fragments, live <i>Gemma gemma</i> , grass shrimp
26	38	6	1.98	75	16	27.91	2.1	Olive grey (5 Y 4/1) mottled with olive black (5 Y 2/1), very fine sandy mud, pretty firm, oxidized worm tubes, occasional shell fragments, live <i>Gemma gemma</i>
27	38	6	1.99	75	16	48.19	2.1	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 3/1), very silty mud, worm tubes
28	38	6	2.30	75	17	8.62	2.0	Olive grey (5 Y 4/1), muddy, watery, very fine sand, worm tubes, worms, few shell fragments
29	38	6	2.24	75	17	28.78	1.5	Olive grey (5 Y 4/1), muddy to fine sand, worm tubes, shells
30	38	6	36.39	75	18	10.21	0.8	Dark greenish grey (5 GY 4/1), mud, olive grey (5 Y 4/1) floc, cottage cheese texture, watery, worm tubes, some worms, plant material, red algae mat
31	38	6	20.35	75	18	31.44	0.9	Dark greenish grey (5 GY 4/1), mud, olive grey (5 Y 4/1) floc, cottage cheese texture, watery, worm tubes, plant material, red algae mat
32	38	6	5.30	75	19	33.86	1.8	Dark greenish grey (5 GY 4/1), mud, worm tubes, algae mat, green seaweed, orange sponge
33	38	6	5.66	75	19	54.38	1.2	Olive grey (5 Y 4/1), mud, worm tubes
34	38	5	49.50	75	20	16.39	1.5	Greenish black (5 GY 2/1), smooth gelatinous mud, olive grey (5 Y 4/1) floc, worms
35	38	5	48.61	75	19	55.10	1.4	Olive grey(5 Y 4/1) to dark greenish grey (5 GY 4/1), coarse silty mud, lots of worm tubes, worms
36	38	5	48.67	75	19	34.17	1.2	Olive grey (5 Y 4/1), slightly silty mud, worm tubes, grass shrimp, lots of algae, green seaweed
37	38	5	47.88	75	19	13.62	1.2	Olive grey(5 Y 4/1), gritty mud, lots of worm tubes, worms, shell fragments, algae mat

I

Station #		Latitude		Longitude				983 North American Datum (NAD83).
	DD	ММ	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
								on top
38	38	5	46.98	75	18	11.62	0.9	Olive grey, silty mud, cottage cheese texture, worm tubes, worms, shell fragments, plant mat, red algae mat
39	38	5	46.17	75	17	29.86	1.8	Dark greenish grey (5 GY 4/1), very gritty mud, cohesive, worm tubes, shells
40	38	5	45.99	75	17	9.25	2.1	Olive grey (5 Y 4/1) oxidized, silty mud, very cohesive, sticky
41	38	5	46.07	75	16	48.48	2.1	Olive grey (5 Y 3/2), muddy very fine sand, lots of worm tubes, small sample, mostly shell fragments
42	38	5	45.43	75	16	27.11	1.5	Medium olive brown (5 Y 4/4), fine sand, live Gemma gemma
43	38	5	45.42	75	16	7.29	1.5	Olive grey (5 Y 4/1) with a hit of brown, very fine sand, clean sample
44	38	5	44.78	75	15	46.25	1.2	Olive grey (5 Y 4/1), fine to very fine sand, clumps of confusing brown seaweed with shell fragments, grass shrimp, live <i>Gemma gemma</i>
45	38	5	44.15	75	15	25.82	0.9	Dark yellow brown (10 YR 4/2), fine sand, became darker with depth, grass shrimp, couple of live <i>Gemma gemma</i>
46	38	5	44.06	75	15	4.73	0.9	Light yellow brown (10 YR 4/2), fine sand, plant material, grass shrimp, live <i>Gemma</i> gemma
47	38	5	43.59	75	14	44.21	0.8	Light olive grey (5 Y 5/2) to dark yellow brown (10 YR 4/2), fine to medium sand, occasional shell fragments, live <i>Gemma gemma</i>
48	38	5	43.72	75	14	23.11		Station too hazardous to reach
49	38	5	42.48	75	13	0.48		Too shallow to reach, no sample
50	38	5	27.70	75	14	23.75	1.3	Dark greenish grey (5 GY 4/1), muddy very fine sand, fairly firm, worm tubes
51	38	5	27.80	75	14	45.21	0.5	Neutral olive grey (5 Y 4/1), slightly muddy very fine sand, plants, lots of <i>Zostera</i> marina
52	38	5	27.66	75	15	5.86	1.1	Olive grey (5 Y 4/1), very fine sand, worm tubes, grass shrimp, <i>Zostera marina</i> , green seaweed
53	38	5	28.01	75	15	26.46	1.1	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), very fine sand, Zostera marina, little arthropods
54	38	5	28.80	75	15	47.08	1.2	Dark greenish grey (5 GY 4/1), fine to very fine sand, clean sand, live Gemma gemma
55	38	5	29.40	75	16	7.71	1.2	Olive grey (5 Y 4/1), fine to very fine sand, live Gemma gemma, green seaweed, darker

Station #	Latitude			Longitude				
	DD	MM	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
								with depth
56	38	5	28.66	75	16	29.16	1.8	Olive grey (5 Y 4/1), muddy sand, worm tubes, plant material
57	38	5	29.21	75	16	48.64	2.1	Olive grey (5 Y 4/1), very fine sandy mud, worm tubes, lots of seaweed, green seaweed on top
58	38	5	30.40	75	17	10.04	2.1	Dark greenish grey (5 GY 4/1), slightly silty mud, cohesive, worm tubes, kinda watery
59	38	5	30.41	75	17	30.35	1.8	Dark greenish grey (5 GY 4/1), slightly gritty mud, worm tubes, occasional shell fragments
59R	38	5	30.41	75	17	30.35	1.8	Dark greenish grey (5 GY 4/1), very fine sandy mud, somewhat watery
60	38	5	30.95	75	17	51.52	1.5	Dark greenish grey (5 GY 4/1), muddy fine sand, cottage cheese texture, worm tubes, lots of shell fragments
60R	38	5	30.95	75	17	51.52	1.7	Dark greenish grey (5 GY 4/1), sandy mud, worm tubes, live worms, lots of shells, oyster shell hash, red algae
61	38	5	30.73	75	18	11.72	1.2	Olive grey (5 Y 4/1), silty mud, cottage cheese texture, some worm tubes, red algae mat on top
61R	38	5	30.73	75	18	11.72	1.2	Olive grey (5 Y 4/1), muddy sand, pretty stiff, worm tubes, some oxidized, couple worms, green seaweed
62	38	5	31.26	75	18	32.84	0.6	Dark greenish grey (5 GY 4/1), slightly silty mud, very fine sand with coarse silt, cottage cheese texture, fairly cohesive, worm tubes
62R	38	5	31.26	75	18	32.84	1.2	Dark greenish grey (5 GY 4/1), mud, shell fragments, confusing brown seaweed
63	38	5	32.06	75	19	34.55	1.8	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), lumpy mud, slightly silty, lots of worm tubes
64	38	5	32.72	75	19	55.35	1.4	Dark greenish grey, mud, worm tubes, worm, polychaetes, small sample
65	38	5	32.51	75	20	16.28	1.2	Dark greenish grey (5 GY 4/1), slightly gritty mud, lumpy sand pockets, pretty firm, live <i>Ensis sp.</i>
66	38	5	16.64	75	20	16.24	0.9	Dark greenish grey (5 GY 4/1), gritty mud, pretty cohesive, worm tubes, live <i>Gemma</i> gemma
67	38	5	16.03	75	19	55.94	1.8	Dark greenish grey (5 GY 4/1), silty mud, worm tubes, shell fragments, sea cucumber
68	38	5	15.98	75	19	34.93	1.2	Dark greenish grey (5 GY 4/1), gritty mud, cottage cheese texture, lumpy, some worm

	Table IX. Location coordinates and field descriptions of surficial samples collected in the in the middle Chincoteague Bay area. Location coordinates (latitude and longitude) are based on 1983 North American Datum (NAD83).										
Station #	Latitude			Longitude			Water Depth				
	DD	MM	SS.SS	DD	MM	SS.SS	(cm)	Description			
								tubes, worms			
69	38	5	14.17	75	18	12.80	1.4	Dark greenish grey (5 GY 4/1), silty mud, worm tubes, lots of shell and oyster fragments			
70	38	5	14.89	75	17	51.65	1.5	Olive grey (5 Y 4/1), silty mud, worm tubes, worms, shell fragments			
71	38	5	13.72	75	17	31.36	1.8	Mottled dark greenish grey (5 GY 4/1) with greenish black (5 GY 2/1), slightly silty mud, lots of worm tubes, worms, plant material			
72	38	5	12.76	75	17	10.17	2.1	Dark greenish grey (5 GY 4/1), fairly smooth mud, worm tubes, worms, shell fragments, plant material			
73	38	5	12.35	75	16	49.57	2.4	Greenish black (5 G 2/1), very stiff silty mud, worm tubes, shell fragments			
74	38	5	12.55	75	16	28.31	2.3	Greenish black (5 GY 2/1), very fine sandy mud, worm tubes, plant material, live <i>Gemma gemma</i>			
75	38	5	12.26	75	16	8.62	1.8	Olive grey (5 Y 4/1), slightly muddy, very firm, very fine sand, worm tubes, live worms, confusing brown seaweed, live <i>Gemma gemma</i>			
76	38	5	11.61	75	15	47.09	1.4	Olive black (5 Y 2/1), fine to very fine sand, fairly clean, small shell fragments, live <i>Gemma gemma</i>			
77	38	5	11.40	75	15	26.28	0.9	Olive grey (5 Y 4/1), fine sand, very small sample			
78	38	5	11.18	75	15	5.85	1.2	Olive grey (5 Y 4/1), fine to very fine sand, trace mud, shell fragments			
79	38	5	10.23	75	14	45.48	1.8	Greenish black (5 GY 2/1), muddy very fine sand, dark greenish grey floc, lots of worm tubes			
80	38	5	10.48	75	14	23.47	2.0	Greenish black (5 GY 4/1), silty mud, worm tubes, shell fragments			
81	38	5	9.21	75	14	4.09	1.8	Dark greenish grey, muddy very fine sand, shell fragments, lots of confusing brown seaweed, very small sample			
82	38	4	53.63	75	13	23.76	1.7	Dark greenish grey (5 GY 4/1), slightly muddy very fine sand, lots of worm tubes			
83	38	4	53.11	75	13	44.29	1.7	Dark greenish grey (5 GY 4/1), slightly muddy very fine sand, worm tubes, small shell fragments, live <i>Gemma gemma</i>			
84	38	4	54.44	75	14	5.44	1.2	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), fine sand, grass shrimp, live <i>Gemma gemma</i>			
85	38	4	55.65	75	14	25.72	1.2	Olive grey (5 Y 4/1), clean fine sand, live Gemma gemma			
86	38	4	54.08	75	14	46.07	1.2	Olive grey (5 Y 4/1), fine sand, fairly clean, green seaweed, other plant material, live			

Station #		Latitude	e		Longitu	de	Water Depth	
Station #	DD	MM	SS.SS	DD	MM	SS.SS	(cm)	Description
								Gemma gemma
87	38	4	55.33	75	15	6.28	1.4	Mottled olive grey (5 Y 4/1) with dark greenish grey (5 GY 4/1), fine to very fine sand, worm tubes, grass shrimp, shell fragments, live <i>Gemma gemma</i>
88	38	4	55.53	75	15	25.76	1.5	Dark greenish grey (5 GY 4/1), fine sand, solitary worm tube
89	38	4	56.25	75	15	48.03	1.5	Dark greenish grey (5 GY 4/1), fine to very fine sand, few worm tubes, shell fragments
90	38	4	55.20	75	16	8.90	1.8	Olive grey (5 Y 4/1), fine to very fine sand, green seaweed, live Gemma gemma
91	38	4	55.77	75	16	29.25	2.3	Dark greenish grey (5 GY 4/1), 50/50 sand-mud, worm tubes, very small sample
92	38	4	56.88	75	16	49.41	2.3	Dark greenish grey (5 GY 4/1), very fine sandy mud, moderately firm, cohesive, worm tubes, green seawedd
93	38	4	56.86	75	17	10.42	2.0	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 3/1), very fine sandy mud, relatively cohesive, firm, worm tubes, plant material
94	38	4	58.23	75	17	32.18	1.8	Dark greenish grey (5 GY 4/1), silty mud, pretty cohesive, worm tubes, worms, plant material
95	38	4	57.73	75	17	51.56	1.5	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), very fine sandy mud, lots of worr tubes, live <i>Gemma gemma</i>
96	38	4	59.89	75	19	14.66	1.2	Dark greenish grey (5 G 4/1), slightly gritty mud, coarse silt, worm tubes, shell fragments, some plant material, fecal pellets, watery
97	38	4	59.58	75	19	35.55	1.3	Dark greenish grey (5 G 4/1), slightly gritty mud, coarse silt, worm tubes, shell fragments, fecal pellets, watery
98	38	5	0.04	75	19	56.27	1.2	Dark greenish grey (5 GY 4/1 and 5 G 4/1), gritty mud (on sand), worm tubes, worms, algea/seaweed mat, some root material, watery
99	38	5	0.25	75	20	37.75	0.9	Dark greenish grey (5 GY 4/1), slightly gritty mud, pretty stiff, cohesive, sticky, worm tubes, shell fragments
100	38	5	0.88	75	21	19.64	0.5	Olive grey (5 Y 4/1), fine to very fine sand, darker towards bottom dark greenish grey (5 GY 4/1), worm tubes
101	38	4	44.79	75	21	19.47	0.5	Mottled olive brown (5 Y 4/4) with olive grey (5 Y 3/2), slightly silty medium to fine sand, shell fragments, algae mat
102	38	4	44.86	75	20	59.28	0.9	Dark greenish grey (5 GY 4/1), lumpy mud, very cohesive, worm tubes, worms, shell fragments, algae mat, seaweed

I

		Latitude			Longitu	de		
Station #	DD	ММ	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
103	38	4	43.33	75	19	15.41	1.4	Dark greenish grey (5 GY 4/1), mud, worm tubes, shell fragments, watery
104	38	4	43.12	75	18	54.61	1.2	Dark greenish grey (5 GY 4/1), coarse silty mud, worm tubes, watery
105	38	4	39.64	75	17	10.34	2.0	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 3/1), very fine sandy mud, firm, cohesive, worm tubes, abundant shell fragments, brown and green seaweed
106	38	4	40.05	75	16	50.06	2.4	Dark greenish grey (5 GY 4/1), very fine sandy silty mud, olive grey (5 Y 4/1) floc, <i>Zostera marina</i> , shell fragments
107	38	4	38.72	75	16	32.40	2.4	Dark greenish grey (5 GY 4/1), very fine sandy mud, curdled texture, worm tubes, worms, shell fragments,
108	38	4	38.50	75	16	8.98	2.0	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), slightly muddy fine sand, worm tubes, couple shell fragments
109	38	4	39.02	75	15	47.79	1.8	Olive grey (5 Y 4/1), very fine sand, worm tubes, occasional shell fragments, very smal sample
110	38	4	39.43	75	15	27.51	1.2	Olive grey (5 Y 4/1), fine sand, plant material, Zostera marina, live Gemma gemma
111	38	4	38.85	75	15	6.55	0.8	Mottled olive grey (5 Y 4/1) with olive black (5 Y 2/1), worm tubes, plant material (<i>Zostera marina</i>), live <i>Gemma gemma</i>
112	38	4	38.72	75	14	46.69	0.8	Olive grey (5 Y 4/1) to dark greenish grey (5 gy 4/1), fine sand, trace silt, very healthy <i>Zostera marina</i> bed
113	38	4	38.49	75	14	25.48		Too shallow, SAV
114	38	4	38.01	75	14	4.44	1.2	Greenish black (5 G 2/1), fine sand, grass shrimp, occasional shell fragments, live <i>Gemma gemma</i>
115	38	4	38.04	75	13	43.43	0.6	Mottled olive grey (5 Y 4/1) with dark greenish grey (5 GY 4/1), fine sand, flattened worm tubes, grass shrimp, live <i>Gemma gemma</i>
116	38	4	21.53	75	14	4.72		Too shallow to sample
117	38	4	21.95	75	14	25.89		Too shallow to sample
118	38	4	23.51	75	15	27.73	0.6	Olive grey (5 Y 4/1), very fine sand, brown seaweed, Zostera marina, rooted Zostera marina
119	38	4	24.11	75	15	48.35	0.9	Olive black (5 Y 2/1), very fine sand, grass shrimp, Zostera marina
120	38	4	23.94	75	16	9.53	1.8	Olive grey (5 Y 4/1), very slightly muddy very fine sand, plant material shell fragments

						1		urficial samples collected in the in the middle Chincoteague Bay area. 1983 North American Datum (NAD83).
Station #		Latitude	è		Longitu	de	Water Depth	
buildin "	DD	MM	SS.SS	DD	MM	SS.SS	(cm)	Description
121	38	4	24.43	75	16	29.50	1.8	Dark greenish grey (5 GY 4/1), muddy very fine sand, worm tubes, live worms
122	38	4	25.01	75	16	50.54	1.8	Dark olive grey (5 Y 4/1), silty mud, slightly gritty, worm tubes, shell fragments
123	38	4	25.19	75	17	11.58	1.8	Greenish black (5 GY 2/1), slightly silty mud, very cohesive, <i>Ruppia maritima</i> , live <i>Gemma gemma</i> , worms
124	38	4	25.91	75	17	53.30	1.2	Dark greenish grey (5 GY 4/1), very fine sand, coarse silt mud
125	38	4	27.25	75	18	34.30	1.1	Dark greenish grey (5 G 4/1) with olive grey (5 Y 4/1), mud, occasional worm tubes, red seaweed
126	38	4	27.01	75	18	55.44	1.5	Olive grey (5 Y 4/1), gritty mud, occasional worm tubes
127	38	4	27.22	75	19	16.24	1.5	Dark greenish grey (5 GY 4/1), gritty mud, couple worm tubes, plant material
128	38	4	27.74	75	19	36.62	1.2	Dark greenish grey (5 GY 4/1), very, very fine sandy mud, curdled texture, worm tubes, shell fragments, trace plant material, algae mat, somewhat watery
129	38	4	28.45	75	20	39.26	0.8	Dark yellowish brown (10 YR 4/2) to greenish black (5 GY 2/1), coarse fine sand, lumps of muddy sand, worm tubes, 1/2 worm, shell fragments, plant material (rhizomes)
130	38	4	28.83	75	20	58.99	0.9	Dark greenish grey (5 GY 4/1), smooth mud, gelatinous, lots of worms, algae mat
131	38	4	28.75	75	21	20.58	0.9	Olive grey (5 Y 4/1), slightly gritty mud, worm tubes, shell fragments (oyster), algae mat plant mat, fecal pellets
132	38	4	29.50	75	21	41.57	1.2	Dark greenish grey (5 GY 4/1), slightly gritty mud, worm tubes, algae mat, somewhat watery
133	38	4	12.99	75	21	41.41	0.8	Dark greenish grey (5 GY 4/1), gritty mud, worm tubes, lots of worms, shell fragments (<i>Ensis</i>)
134	38	4	12.47	75	21	20.78	1.1	Dark greenish grey (5 GY 4/1) with olive grey (5 Y 4/1), smooth very slightly gritty mud, cohesive, worm tubes, worms, shell fragments, watery
135	38	4	11.83	75	20	59.17	1.2	Dark greenish grey (5 GY 4/1), smooth mud, cohesive, worm tubes, worms, shell fragments, watery
136	38	4	11.74	75	20	38.95	1.2	Dark greenish grey (5 GY 4/1) with olive grey (5 Y 4/1), slightly gritty mud, seaweed
137	38	4	11.14	75	20	19.64	1.2	Greenish black (5 G 2/1), slightly gritty mud, cohesive, solid, worm tubes, shell fragments, algae mat
138	38	4	10.99	75	19	58.02	1.2	Greenish black (5 GY 2/1), muddy fine to medium sand, lots of plant material, seaweed,

Table IX. Location coordinates and field descriptions of surficial samples collected in the in the middle Chincoteague Bay area.

Station #		Latitude	2		Longitu	de	Weter Denth	
Station #	DD	MM	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
								Ruppia maritima
139	38	4	11.30	75	19	36.80	1.1	Olive black (5 Y 2/1) with some olive grey (5 Y 4/1), fine to very fine sand, slightly silty big worm tubes, seaweed (in place) live <i>Gemma gemma</i>
140	38	4	11.20	75	19	17.06	1.2	Dark greenish grey (5 GY 4/1), smooth mud, gelatinous, worm tubes
141	38	4	10.62	75	18	55.00	1.5	Olive grey (5 Y 4/1), mud, worm tubes, shell fragments, grass shrimp, oyster shell, watery
142	38	4	10.43	75	18	35.27	1.5	Dark greenish grey (5 GY 4/1), mud, worm tubes
143	38	4	9.53	75	18	15.39	1.5	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), mud, worm tubes, shell fragments
144	38	4	9.44	75	17	54.22	1.5	Olive grey (5 Y 4/1), muddy very fine sand, worm tubes, green seaweed, other plant material
145	38	4	9.52	75	17	32.96	2.4	Olive grey (5 Y 4/1), silty mud, worm tubes, shell fragments, live Gemma gemma
146	38	4	8.75	75	17	12.10	2.4	Dark greenish grey (5 GY 4/1), coarse silty mud, shell fragments
147	38	4	8.54	75	16	50.97	2.1	Olive grey (5 Y 4/1), very fine sandy mud, cohesive, worm tubes, grass shrimp
148	38	4	7.97	75	16	30.43	2.4	Greenish black (5 GY 2/1), slightly muddy fine sand, worm tubes, shell fragments
149	38	4	7.83	75	16	10.33	1.5	Dark greenish grey (5 GY 4/1), fine sand, grass shrimp, shell fragments
150	38	4	7.29	75	15	49.17	1.5	Olive grey (5 Y 4/1), very fine sand, red algae, roots of Zostera marina
151	38	4	7.24	75	15	28.53	0.9	Olive grey (5 Y 4/1) to olive black (5 Y 2/1), mud, curdled cottage cheese texture, lots or worm tubes, shell fragments
152	38	3	50.63	75	15	28.97	1.2	Dark greenish grey (5 GY 4/1) with some olive black (5 Y 2/1), muddy fine to very fine sand, shell fragments, brown seaweed, <i>Zostera marina, Ensis</i> shell
153	38	3	51.08	75	15	50.13	1.2	Olive grey (5 Y 4/1), fine sand, some worm tubes
154	38	3	51.68	75	16	10.39	0.6	Olive grey (5 Y 4/1), fine to very fine sand, little tiny shells, green seaweed on top, <i>Zostera marina</i>
155	38	3	51.68	75	16	29.88	1.8	Olive grey (5 Y 4/1), very fine sand, some silt, shell fragments, old oyster bed, plant material
156	38	3	52.26	75	16	51.28	2.4	Greenish black (5 GY 2/1), slightly gritty mud, plant material, possible <i>Zostera marina</i> , orange sponge like thing
157	38	3	52.31	75	17	12.28	2.4	Greenish black (5 GY 2/1), gritty mud, live worms, plant material

		Latitude			Longitu	de		
Station #	DD	MM	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
158	38	3	52.78	75	17	33.40	2.1	Olive grey (5 Y 4/1), slightly muddy very fine sand, worm tubes, lots of shell fragments
159	38	3	52.98	75	17	53.54	1.8	Olive grey (5 Y 4/1), slightly muddy very fine sand, worm tubes, live worms
160	38	3	53.37	75	18	15.48	1.8	Olive grey (5 Y 4/1), medium to fine sand, shell fragments, small sample
161	38	3	53.45	75	18	36.16	1.8	Olive grey (5 Y 4/1), mud, cohesive, worm tubes, shell fragments
162	38	3	54.08	75	18	57.36	2.4	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), mud, few worm tubes, few shell fragments, plant material, green seaweed on top
163	38	3	53.97	75	19	16.23	0.6	Dark greenish grey (5 GY 4/1), mud, confusing brown seaweed, shell fragments, <i>Ensis</i>
164	38	3	54.57	75	19	37.68	0.6	Dark greenish grey (5 GY 4/1), slightly gritty mud, cohesive, worm tubes, worms, shell fragments, green seaweed
165	38	3	54.54	75	19	58.03	1.5	Dark greenish grey (5 GY 4/1), slightly gritty mud, live worms, shell fragments
166	38	3	55.08	75	20	19.55	1.4	Greenish black (5 G 2/1), smooth mud, firm cohesive, worm tubes, shell fragments
167	38	3	55.79	75	20	39.64	1.4	Greenish black (5 G 2/1), smooth mud, worm tubes, occasional shell fragments
168	38	3	56.27	75	20	59.61	1.2	Olive black (5 Y 2/1) to olive grey (5 Y 4/1), smooth mud, oyster shell, other shell fragments, lots of plant material, green and brown seaweed, algae mat
169	38	3	39.61	75	21	0.53	1.0	Greenish black (5 G 2/1), medium sandy mud, pretty firm, cohesive, worm tubes, lots of oyster shells, plant material
170	38	3	39.45	75	20	40.06	1.2	Dark greenish grey (5 G 4/1), medium to fine sand, gritty mud, occasional worm tubes, some plant material, more watery
171	38	3	38.77	75	20	19.68	1.5	Dark greenish grey (5 G 4/1), mud, worm tubes, occasional shell fragments
172	38	3	38.76	75	19	59.25	1.5	Dark greenish grey (5 GY 4/1), mud, (color mix of greenish black (5 GY 2/1) and more olive grey (5 Y 4/1)), worm tubes, shell fragments
173	38	3	38.28	75	19	37.19	1.4	Olive grey (5 Y 4/1), fine to very fine sandy mud, lots of worm tubes, shell fragments
174	38	3	37.96	75	19	17.51	1.5	Olive grey (5 Y 4/1), very fine sandy mud, worm tubes
175	38	3	37.49	75	18	36.20	1.8	Dark greenish grey (5 GY 4/1), silty mud, gritty
176	38	3	36.82	75	18	14.76	1.8	Olive grey (5 Y 4/1), silty mud, few worm tubes, watery, <i>Ensis</i> shells
177	38	3	36.79	75	17	54.91	1.8	Olive grey (5 Y 4/1), muddy very fine sand, lots of worm tubes, shell fragments, <i>Ensis</i> shell

I

Locan			`	e una .	U	,		983 North American Datum (NAD83).
Station #		Latitude	1		Longitu		Water Depth	Description
	DD	MM	SS.SS	DD	MM	SS.SS	(cm)	Description
178	38	3	36.06	75	17	12.26	2.1	Olive grey (5 Y 4/1), very fine sand, worm tubes, lots of shells, grass shrimp
179	38	3	36.12	75	16	52.11	2.1	Greenish black (5 GY 2/1), slightly muddy very fine sand, few worm tubes
180	38	3	35.51	75	16	30.75	1.8	Olive grey (5 Y 4/1), fine sand, worm tubes, shell hash
181	38	3	35.09	75	16	9.76	2.4	Olive grey (5 Y 4/1), slightly muddy very fine sand, few worm tubes, plant material
182	38	3	34.44	75	15	49.88	1.5	Olive grey (5 Y 4/1), fine sand, worm tubes, shell fragments, green seaweed, sea squirt (<i>Styela</i> ?)
183	38	3	34.16	75	15	29.25	0.9	Olive grey (5 Y 4/1), slightly silty very fine sand, shell fragments, Zostera marina, small sample
184	38	3	17.83	75	16	11.61	2.1	Olive grey (5 Y 4/1), silty very fine sand, worm tubes, grass shrimp, abundant shell hash
185	38	3	18.55	75	16	31.32	2.1	Dark greenish grey (5 GY 4/1), silty fine to very fine sand, plant material
186	38	3	19.19	75	16	52.39	1.8	Olive grey (5 Y 4/1), muddy very fine sand, worm, plant material, live and dead <i>Gemma</i> gemma
187	38	3	19.43	75	17	13.27	1.8	Olive grey (5 Y 4/1), muddy very fine sand, 30% shell hash, lots of shell fragments
188	38	3	19.72	75	17	34.84	2.4	Clam bed, too hard, 5 tries, no sample
189	38	3	20.12	75	17	55.55	2.1	Dark greenish grey (5 GY 4/1), slightly silty very fine sand, worm tubes, shell fragments
190	38	3	20.65	75	18	15.64	2.1	Dark greenish grey (5 GY 4/1), very fine sandy mud, lots of worm tubes, shell fragments
191	38	3	20.70	75	18	36.97	2.1	Dark greenish grey (5 GY 4/1), coarse silty mud, few shell fragments, quaghog 3.5 inches (<i>Mercenaria mercenaria</i>)
192	38	3	21.03	75	18	57.47	1.8	Dark greenish grey (5 GY 4/1), slightly gritty mud, cohesive, shell hash, little seaweed on top, sea slug?
193	38	3	22.41	75	19	59.14	1.4	Dark greenish grey (5 G 4/1) with olive grey (5 Y 4/1), slightly gritty mud, worm tubes, shell fragments, live <i>Ensis</i>
194	38	3	22.62	75	20	20.10	1.2	Greenish black (5 GY 2/1), very fine sandy mud, worm tubes, shell fragments, kinda watery
195	38	3	22.85	75	20	40.56	1.1	Dark greenish grey (5 GY 4/1), fine sandy mud, cohesive, worm tubes, worms, couple shell fragments, algae mat, seaweed
196	38	3	22.86	75	21	1.61	1.1	Dark greenish grey (5 GY 4/1) to olive grey (5 Y 4/1), lumpy mud, some coarse silt, worm tubes

Table IX. Location coordinates and field descriptions of surficial samples collected in the in the middle Chincoteague Bay area.

		Latitude	;		Longitu	de		
Station #	DD	ММ	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
197	38	3	6.79	75	21	1.03	0.6	Dark greenish grey (5 GY 4/1) with olive grey (5 Y 4/1), mud, worm tubes, worms
198	38	3	4.75	75	19	17.70	1.5	Dark greenish grey (5 GY 4/1), silty mud, cohesive, worm tubes
199	38	3	4.22	75	18	56.88	1.8	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), slightly gritty mud, firm, few worm tubes, live worms, some shell fragments
200	38	3	4.13	75	18	37.31	1.8	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), slightly gritty mud, somewhat cohesive, occasional shell fragments
201	38	3	3.72	75	18	16.03	1.8	Dark greenish grey (5 GY 4/1), slightly gritty mud, worm tubes, occasional shell fragments
202	38	3	3.83	75	17	55.07	1.8	Dark greenish grey (5 GY 4/1), muddy very fine sand, stiff, worm tubes, worms, shell fragments
203	38	3	3.14	75	17	34.54	2.1	Dark greenish grey (5 GY 4/1), very gritty mud, worm tubes, plant material, oyster shells, shell hash
204	38	3	3.22	75	17	13.65	1.8	Olive grey (5 Y 4/1), slightly silty very fine sand, worm tubes, lots of shells, old oyster bed, small sample
205	38	3	2.62	75	16	52.95	1.8	Olive grey (5 Y 4/1), slightly silty very fine sand, worm tubes, occasional shell fragments, <i>Ruppia maritima</i> , green seaweed, live <i>Gemma gemma</i>
206	38	3	2.57	75	16	31.91	1.8	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), muddy very fine sand, worm tubes, grass shrimp, plant material, live <i>Gemma gemma</i>
207	38	3	2.01	75	16	12.23	1.5	Olive grey (5 Y 4/1), slightly muddy very fine sand, worm tubes, fragments of <i>Zostera marina</i> , live <i>Gemma gemma</i>
208	38	3	1.95	75	15	50.95	1.2	Olive grey (5 Y 4/1), muddy very fine sand, worm tubes, occasional shell fragments, <i>Zostera marina</i> , leaves
209	38	3	1.73	75	15	29.87	0.6	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), slightly muddy fine to very fine sand, worm tubes, fragments of <i>Zostera marina</i>
210	38	2	45.59	75	16	11.77	1.8	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), slightly silty fine sand, worm tubes
211	38	2	45.94	75	16	32.84	1.8	Olive grey (5 Y 4/1), silty very fine sand, worm tubes, live Gemma gemma
212	38	2	46.13	75	16	54.29	1.8	Dark greenish grey (5 GY 4/1), slightly silty very fine sand, green seaweed, live <i>Gemma</i> gemma

		Latitude	,		Longitu	de		
Station #	DD	ММ	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
213	38	2	46.87	75	17	13.59	1.8	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), fine to very fine sand, trace mud, worm tubes, shells
214	38	2	46.81	75	17	35.41	2.1	Dark greenish grey (5 GY 4/1), slightly muddy very fine sand
215	38	2	47.76	75	17	56.27	2.1	Dark greenish grey (5 GY 4/1), very fine sand, shell fragments, Ensis
216	38	2	48.13	75	18	17.06	2.1	Greenish black (5 GY2/1), silty mud, worm tubes, shell fragments, green dead seaweed, dead <i>Ensis</i>
217	38	2	48.11	75	18	37.73	1.8	Greenish black (5 G 2/1), silty mud, coarse, cohesive, lots of live worms
218	38	2	48.44	75	18	57.90	1.8	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), silty mud, worm tubes
219	38	2	48.88	75	19	19.35	1.8	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), very fine sandy mud, green seaweed, shell fragments
220	38	2	48.79	75	19	39.65	1.5	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), slightly gritty mud, worm tubes
221	38	2	50.59	75	21	2.43	0.5	Dark greenish grey (5 GY 4/1), mud, worm tubes, shell fragments
222	38	2	33.88	75	21	1.78	0.5	Greenish black (5 GY 2/1) with olive grey (5 Y 4/1), smooth mud, lots of worm tubes
223	38	2	50.73	75	21	23.38	0.3	Dark greenish grey (5 GY 4/1), lumpy mud, worm tubes, worms, watery
224	38	2	33.89	75	21	23.15	0.5	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), mud, firm, cohesive, worm tubes, a few shells, grass shrimp
225	38	2	32.75	75	19	38.83	1.8	Olive grey (5 Y 4/1), very fine sandy mud, cohesive, worm tubes
226	38	2	31.99	75	19	17.97	1.8	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), very fine sandy mud, worm tubes, shell fragments
227	38	2	32.05	75	18	57.67	2.1	Dark greenish grey (5 GY 4/1), very fine sandy mud, cohesive, few worm tubes, shell fragments
228	38	2	31.34	75	18	37.34	2.4	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), very firm cohesive silty mud, many worm tubes
229	38	2	31.52	75	18	17.08	2.1	Olive black (5 Y 2/1), cohesive mud, worm tubes, shell fragments
230	38	2	31.31	75	17	56.12	2.1	Dark greenish grey (5 GY 4/1), mud, few worm tubes, shell fragments
231	38	2	30.67	75	17	34.36	2.1	Olive grey (5 Y 4/1), very fine sand, worm tubes, shell fragments, <i>Ruppia maritima</i> , small sample

I

		Latitude			Longitu	de		
Station #	DD	MM	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
232	38	2	30.07	75	17	13.95	1.8	Olive grey (5 Y 4/1), very fine sand, worm tubes, shell fragments
233	38	2	29.76	75	16	52.87	2.1	Olive grey (5 Y 4/1), very fine sand, worm tubes, green seaweed, live Gemma gemma
234	38	2	29.59	75	16	32.45	2.1	Greenish black (5 GY 2/1), muddy very fine sand, worm tubes, shell fragments
235	38	2	29.22	75	16	12.16	1.8	Olive grey (5 Y 4/1) to greenish black (5 GY 2/1), medium to fine sand, worm tubes, shells
236	38	2	29.24	75	15	51.86	0.9	Olive grey (5 Y 4/1), fine to very fine sand, red algae on top, Zostera marina bed
237	38	2	12.06	75	15	31.43	0.6	Olive grey (5 Y 4/1), silty very fine sand, red algae, rooted SAV, Zostera marina
238	38	2	12.37	75	15	51.65	1.5	Olive grey (5 Y 4/1), fine sand, worm tubes, grass shrimp
239	38	2	12.66	75	16	13.33	1.8	Olive grey (5 Y 4/1), slightly silty very fine sand, some medium sand, shell fragments, live <i>Gemma gemma</i>
240	38	2	13.31	75	16	32.80	2.1	Dark greenish grey (5 GY 4/1), muddy very fine sand, worm tubes, shell fragments
241	38	2	13.60	75	16	54.37	2.1	Olive grey(5 Y 4/1), slightly silty very fine sand, worm tubes, shell fragments
242	38	2	14.22	75	17	14.28	1.8	Dark greenish grey (5 GY 4/1), slightly silty very fine sand, worm tubes, shell fragments green seaweed
243	38	2	14.08	75	17	35.74	2.1	Dark greenish grey (5 GY 4/1), very fine sand, worm tubes, very small shell fragments, live <i>Gemma gemma</i>
244	38	2	14.60	75	17	57.46	2.4	Dark greenish grey (5 GY 4/1), muddy very fine sand, plant material
245	38	2	15.22	75	18	18.16	2.4	Greenish black (5 GY 2/1), silty mud, worm tubes, watery
246	38	2	15.36	75	18	38.66	2.1	Dark greenish grey (5 GY 4/1), coarse silty mud, cohesive, worm tubes, green algae
247	38	2	15.47	75	18	59.16	1.8	Dark greenish grey (5 GY 4/1), silty mud, worm tubes, shell fragments
248	38	2	15.64	75	19	19.67	1.8	Olive grey (5 Y 4/1), very fine sandy mud, shells, shell hash, old oyster bed
249	38	2	16.65	75	19	40.40	2.1	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), lots of worm tubes, little crab, shell fragments, few grass leaves
250	38	2	17.03	75	20	22.26	1.5	Dark greenish grey (5 GY 4/1), silty mud, worm tubes, somewhat cohesive, occasional shell fragments
251	38	2	17.19	75	20	42.39	1.5	Olive black (5 Y 2/1) to greenish black (5 GY 2/1), silty mud, worm tubes, plant roots, oyster fragments

		Latitude			Longitu	de		
Station #	DD	ММ	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
252	38	2	1.49	75	21	23.52	0.6	Greenish black (5 GY 2/1), very fine sandy mud, solid oyster shells
253	38	2	1.22	75	21	2.12	1.2	Olive grey (5 Y 4/1), mud, fine to medium trace sand, worm tubes, worms
254	38	1	59.70	75	20	21.72	1.5	Dark greenish grey (5 GY 4/1), muddy very fine sand, worm tubes, shell fragments
255	38	2	1.04	75	20	42.40	1.8	Olive grey (5 Y 4/1), very fine sandy mud, worm tubes, shell fragments, plant material,
256	38	2	0.42	75	20	1.81	1.8	Dark greenish grey (5 GY 4/1), very fine sandy mud, worm tubes, shell fragments
257	38	1	59.79	75	19	40.75	2.1	Greenish black (5 GY 2/1), very fine sandy mud, worm tubes, live worms, lots of shell fragments
258	38	2	0.57	75	19	18.25	1.8	Olive black (5 GY 2/1), very fine sandy mud, cohesive, worm tubes, lots of shell fragments
259	38	1	59.33	75	18	58.27	1.8	Greenish black (5 GY 2/1), silty mud, worm tubes, shells, clam shell
260	38	1	58.51	75	18	37.37	2.1	Very fine sandy mud, worm tubes, shell fragments, green seaweed
261	38	1	58.25	75	18	17.74	2.1	Olive grey (5 Y 4/1), slightly silty very fine sand, worm tubes, shell fragments
262	38	1	58.08	75	17	57.19	2.1	Olive grey (5 Y 4/1), muddy very fine sand, shell fragments, seldom worm tubes
263	38	1	57.54	75	17	35.92	2.1	Olive grey (5 Y 4/1), slightly silty very fine sand, shell fragments, seaweed
264	38	1	57.43	75	17	15.30	1.5	Olive grey (5 Y 4/1), medium to fine sand, shell fragments, live green seaweed, live <i>Gemma gemma</i>
265	38	1	57.15	75	16	54.35	1.5	Olive grey (5 Y 4/1), fine to medium sand, worm tubes, shell fragments, plant material, live <i>Gemma gemma</i>
266	38	1	56.15	75	16	13.36	0.9	Olive grey (5 Y 4/1), fine sand, worm tubes, live Gemma gemma
267	38	1	55.36	75	15	53.24	0.9	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), fine sand, worm tubes, plant material, small sample
268	38	2	10.50	75	14	50.46	1.2	Greenish black (5 G 2/1), mud, very organic rich
269	38	1	39.03	75	15	32.60	1.8	Mud with trace very fine sand, gelatinous, cohesive, worm tubes, taken in channel
270	38	1	40.11	75	16	14.48	0.9	Olive grey (5 Y 4/1), fine sand, trace silt, worm tubes, live worms
271	38	1	40.84	75	16	54.49	1.5	Olive grey (5 Y 4/1), fine sand, worm tubes, occasional shell fragments
272	38	1	41.35	75	17	15.84	1.8	Olive grey (5 Y 4/1), very fine sand, trace silt, worm tube, shell fragments, live <i>Gemma</i> , green seaweed, <i>Zostera marina</i>

Locatio	on cooi	dinates	(latitud	e and	longitu	de) are t	based on 1	983 North American Datum (NAD83).
Station #		Latitude	1		Longitu		Water Depth	Devision
	DD	MM	SS.SS	DD	MM	SS.SS	(cm)	Description
273	38	1	41.82	75	17	36.38	2.1	Olive grey (5 Y 4/1), silty very fine sand, worm tube
274	38	1	41.76	75	17	56.72	1.8	Slightly silty fine sand, worm tubes, shell fragments, algae, green seaweed, small sample
275	38	1	43.19	75	18	19.07	2.1	Dark greenish grey (5 GY 4/1), coarse silty mud, worm tubes, few shell fragments
276	38	1	42.56	75	18	38.32	1.8	Dark greenish grey(5 GY 4/1), silty very fine sand, very small sample
277	38	1	42.84	75	18	59.23	1.8	Olive grey (5 Y 4/1), very fine sandy mud, shell fragments
278	38	1	43.32	75	19	20.95	1.8	Dark greenish grey, gritty mud, worm tubes, lots of shells, abundant shell hash
279	38	1	43.39	75	19	41.41	1.8	Dark greenish grey (5 GY 4/1), gritty mud, lots of shells, asundant shell hash
280	38	1	44.58	75	20	1.19	1.8	Dark greenish grey (5 GY 4/1), gritty mud, pockets of anoxic (greenish black (5 GY 2/1)), worm tubes, lots of shells, shell hash
281	38	1	44.69	75	20	22.35	1.8	Dark greenish grey (5 GY 4/1), coarse silty mud, worm tubes, shelly bottom, shells, shel fragments
282	38	1	44.87	75	20	44.12	1.5	Dark greenish grey (5 GY 4/1), very fine sandy mud, worm tubes, plant material, shell fragments
283	38	1	44.85	75	21	3.15	1.8	Slightly very fine sandy mud, worm tubes, worms, shells
284	38	2	2.46	75	22	4.47	1.5	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), smooth mud, some worm tubes, lots of plant material, dead <i>Ruppia maritima</i>
285	38	1	46.09	75	22	5.04	0.0	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), smooth mud, worm tubes, brown seaweed, red algae on top, below floc layer band of very black material
286	38	1	46.09	75	22	25.42	1.2	Dark greenish grey (5 GY 4/1), slightly gritty mud, worm tubes
287	38	1	29.94	75	22	25.74	1.5	Olive grey (5 Y 4/1), mud, little coarse silt, shell fragments
288	38	1	30.10	75	22	4.95	1.2	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), fine sandy mud, some coarse material, plant material
289	38	1	29.07	75	21	24.50	1.8	Greenish black (5 GY 2/1), slightly gritty mud, worms tubes, worms, shell fragments, plant material
290	38	1	28.78	75	21	4.13	1.8	Dark greenish grey (5 GY 4/1), coarse silty mud, cohesive, worm tubes, fecal pellets, plant material
291	38	1	28.59	75	20	43.80	1.8	Greenish black (5 GY 2/1), silky mud, cohesive, worm tubes, shell fragments
292	38	1	28.32	75	20	23.30	2.1	Dark greenish grey (5 GY 4/1), gritty mud, worm tubes, shell fragments, shell hash

Table IX. Location coordinates and field descriptions of surficial samples collected in the in the middle Chincoteague Bay area.

I

Locatio	on coor		,		U	,	based on I	983 North American Datum (NAD83).
Station #	DD	Latitude MM	SS.SS	DD	Longitu MM	de SS.SS	Water Depth (cm)	Description
293	38	1	28.02	75	20	2.11	2.1	Dark greenish grey (5 GY 4/1), silty mud, worm tubes, shells, shell of oyster drill?
294	38	1	28.04	75	19	41.36	1.8	Olive grey (5 Y 4/1), slightly silty very fine sand, worm tubes, lots of shells, oyster hash
295	38	1	27.69	75	19	21.44	1.8	Dark greenish grey (5 GY 4/1), slightly silty very fine sand, shell bottom, shells, oyster shell, small sample
296	38	1	27.11	75	18	59.55	1.8	Dark greenish grey (5 GY 4/1), silty fine to very fine sand, worm tubes, shelly
297	38	1	26.65	75	18	39.23	2.1	Olive black (5 Y 2/1) to greenish black (5 GY 2/1), muddy very fine sand, worm tubes, plant material
298	38	1	26.68	75	18	18.93	2.1	Greenish black, very fine sandy mud, worm tubes
299	38	1	26.61	75	17	56.91	1.8	Olive grey (5 Y 4/1), shell fragments, red algae/seaweed
300	38	1	25.57	75	17	36.68	1.8	Dark greenish grey (5 GY 4/1), slightly silty fine to very fine sand, worm tubes, few shell fragments, red algae on top
301	38	1	25.68	75	17	15.43	1.2	Olive grey (5 Y 4/1), fine to very fine sand, worm tubes, some shell fragments, live <i>Gemma gemma</i>
302	38	1	10.92	75	20	2.05	1.8	Oyster bar, No sample
303	38	1	11.58	75	20	22.99	2.1	Olive grey (5 Y 4/1), silty very fine sand, worm tubes, shell fragments, small sample
304	38	1	12.35	75	20	44.99	2.1	Greenish black (5 GY 2/1), gritty mud, worm tubes, shell fragments
305	38	1	12.15	75	21	4.55	1.8	Dark greenish grey (5 GY 4/1), cohesive mud, worm tubes, some worm tubes highly oxidized, shell fragments
306	38	1	12.54	75	21	25.04	2.1	Dark greenish grey (5 GY 4/1), mud, worm tubes, shell fragments
307	38	1	12.68	75	21	46.53	1.8	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), fine to very fine sandy mud, worm tubes
308	38	1	13.99	75	22	5.52	1.8	Dark greenish grey (5 GY 4/1), slightly silty mud, plant material, watery
309	38	1	13.59	75	22	25.54	1.5	Olive grey (5 Y 4/1) to dark greenish grey (5 GY 4/1), lumpy mud, cohesive, worm tubes
310	38	0	57.67	75	22	25.94	1.5	Dark greenish grey (5 GY 4/1), very fine sandy mud, cohesive, few worm tubes, worms, shell fragments
311	38	6	14.07	75	12	39.29		Too shallow, no sample

		Latitude	e		Longitu	de		
Station #	DD	ММ	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description
312	38	5	42.37	75	13	22.48	1.1	Moderate olive brown , fine to very fine sand, worm tubes, shell fragments, SAV
313	38	5	42.77	75	13	42.25	0.6	Medium olive grey (5 Y 4/2), curdled cottage cheese texture, gritty mud, worm tubes, <i>Ruppia maritima</i>
314	38	5	43.71	75	14	3.37		Too hazardous to reach
315	38	5	47.61	75	18	52.90	1.1	Dark greenish grey (5 GY 4/1), slightly silty mud, curdled cottage cheese texture, shell fragments
316	38	5	32.06	75	19	14.28	0.9	Dark greenish grey (5 GY 4/1), pretty smooth mud, lots of worm tubes, <i>Ensis</i> shells, pretty watery
317	38	5	31.98	75	18	53.22	1.1	Dark greenish grey (5 GY 4/1), lumpy, silty mud, worm tubes
318	38	5	15.84	75	19	14.37	1.5	Dark greenish grey (5 GY 4/1), slightly gritty, lumpy, cottage cheese texture, worm tubes, plant material
319	38	5	14.66	75	18	33.48	1.1	Dark greenish grey (5 GY 4/1), very fine sandy, silty mud, lots of worm tubes, plant material
320	38	4	58.91	75	18	54.41	1.2	Dark greenish grey (5 G 4/1) and greenish black (5 G 2/1 and 5 G3/1), slightly gritty mud, coarse silt, worm tubes, shell fragments, some plant material, fecal pellets, watery
321	38	4	57.95	75	18	15.28	1.2	Dark greenish grey (5 GY 4/1), very fine sand, olive grey (5 Y 4/1) floc, worm tubes, very watery
322	38	4	42.09	75	18	12.86	1.2	Greenish black (5 GY 2/1), very fine sandy mud, worm tubes, plant material
323	38	4	43.92	75	19	36.20	1.5	Dark greensih grey (5 GY 4/1) with olive grey (5 Y 4/1), slightly gritty mud, curdled texture, some worms, algae mat, watery
324	38	4	44.69	75	20	38.52	1.2	Dark greenish grey (5 GY 4/1), smooth mud, shell fragments, plant material, algae mat, pretty watery
325	38	4	28.66	75	20	18.21	0.5	Olive grey (5 Y 4/1), fine to very fine sand, very clean sand, worm tubes, algae mat, grass shrimp
326	38	3	6.54	75	20	41.43	0.6	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1) with some olive grey (5 Y 4/1), gelatinous mud, worm tubes, some plant material
327	38	3	5.35	75	19	59.24	0.5	Dark yellowish brown (10 YR 4/2), fine to very fine sand, big worm tubes
328	38	3	21.25	75	19	16.99	1.5	Olive grey (5 Y 4/1) to olive black (5 Y 2/1), very slightly silty very fine sand, oyster shells

I

Locatic	on coor	dinates	(latitud	e and	longitu	de) are t	based on I	983 North American Datum (NAD83).
Station #		Latitude	2		Longitu	de	Water Depth	
Station #	DD	MM	SS.SS	DD	MM	SS.SS	(cm)	Description
329	38	5	27.17	75	14	3.94	1.2	Olive grey (5 y 4/1) to dark greenish grey (5 GY 4/1), fine to very fine sand, slightly muddy, <i>Zostera marina</i> , seaweed
330	38	5	27.02	75	13	42.93		Too shallow, no sample taken
331	38	5	9.84	75	13	44.01	1.4	Dark greenish grey (5 GY 4/1)(maybe a bit darker), muddy fine to very fine sand, worms, plant material, red algae mat
332	38	5	10.65	75	13	22.69	0.9	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), fine sand, fairly clean, plan material, <i>Ensis</i>
333	38	4	52.98	75	13	2.60	0.9	Dark greenish grey (5 GY 4/1), fine sand, olive grey (5 Y 4/1) top, grass shrimp, live <i>Gemma gemma</i>
334	38	4	37.17	75	13	3.57	0.9	Olive grey (5 Y 4/1), muddy very fine sand, worm tubes, worms, plant material
335	38	4	37.50	75	13	23.18		Too shallow, no sample
336	38	4	21.61	75	13	44.49	0.3	Medium olive grey (5 Y 5/1), fine sand
337	38	4	22.91	75	15	7.35	0.8	Dark greenish grey (5 GY 4/1) to greenish black (5 GY 2/1), sandy gelatinous mud, many worm tubes, <i>Zostera marina</i>
338	38	4	6.44	75	15	8.20	0.6	Greenish black (5 GY 2/1), very fine sandy mud, oxidized worm tubes, worms, dead Zostera marina
340	38	3	0.91	75	15	9.91	0.8	Olive grey (5 Y 4/1), slightly muddy very fine sand, worm tubes, grass shrimp, reddish algae on top
341	38	3	0.70	75	14	49.61	0.6	Olive grey (5 Y 4/1), fine to medium sand, worm tubes, shell fragments, plant material, 25 feet from point of marsh; <i>Juncus roemerianus</i> marsh
342	38	2	27.49	75	14	49.92	1.1	Dark greenish grey (5 GY 4/1) to olive grey (5 Y 4/1), slightly muddy sand, mossy, a fern like plant, <i>Ruppia maritima</i>
343	38	2	28.24	75	15	30.59		Too shallow, grass bed
344	38	2	45.30	75	15	52.45	2.1	Very fine sand, some silt, 30-50% shell, worm tubes, old oyster bed, lots of shell hash
345	38	1	39.07	75	15	11.85	1.5	Greenish black (5 G 2/1), very fine sandy mud, worm tubes, algae on top
346	38	0	59.65	75	22	5.68	1.8	Dark greenish grey (5 GY 4/1), very slightly silty mud, cohesive, fecal pellets
347	38	5	47.31	75	18	32.51	0.9	Olive grey (5 Y 4/1), silty mud, lumpy, cottage cheese texture, worm tubes, occasional shell fragments, pretty watery

						1		192 North American Datum (NAD22)						
Locatio	on coor	unates	(laillud		longitu	ue) are t	based on I	983 North American Datum (NAD83).						
a		Latitude	•		Longitu	de								
Station #	DD	ММ	SS.SS	DD	MM	SS.SS	Water Depth (cm)	Description						
348	348 38 6 4.59 75 18 44.62 0.9 Olive grey (5 Y 4/1), silty mud, worm tubes, few shells 349 38 6 21.06 75 19 59.98 0.5 Greenish black (5 G 2/1), very slightly gritty mud, worm tubes, worms, plant material													
349 38 6 21.06 75 19 59.98 0.5 Greenish black (5 G 2/1), very slightly gritty mud, worm tubes, worms, plant material (rhizomes)														
350	38	3	47.61	75	14	0.75		Greenish black (5 G 2/1), muddy fine sand, fairly cohesive, substituted for 339 as we were not sure we could get into it						
351	38	3	33.76	75	14	47.70	0.5	Greyish black (N1), smooth mud, shell hash, oyster, algae mat on top, in Middlemoor Thorofare, H_2S odor						
352								No station with this number						
353	38	4	37.64	75	17	43.79	0.5	Olive grey (5 Y 4/1), very fine sand/silt, brown seaweed, micaceous						

Table IX. Location coordinates and field descriptions of surficial samples collected in the in the middle Chincoteague Bay area.

"below	detect	ion limit	." Ave	rage det	ection l	imits fo	ediment samp or the metals and dicated by blar	re listed in				0	•			
1			<u> </u>	Textura	l Data		2				Che	mical Da	ta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard''s (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr µg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn μg/g
3	26.52	1.87	0.00	68.33	20.39	11.29	Silty-Sand	0.061	0.852	0.207	38.3	3.9	1.69	181	14.6	44.1
4	45.23	1.53	0.00	13.96	56.31	29.72	Clayey-Silt	0.120	1.472	0.434	77.7	9.5	3.25	275	29.0	88.7
5	44.39	1.54	0.00	8.20	65.53	26.26	Clayey-Silt	0.106	1.246	0.389	73.2	8.0	3.11	321	17.1	79.8
6	39.88	1.61	0.00	14.55	63.12	22.32	Clayey-Silt	0.095	1.106	0.327	66.4	5.9	2.76	301	21.0	72.2
7	36.18	1.68	0.00	36.76	46.17	17.07	Sandy-Silt	0.080	0.891	0.275	52.7	4.3	2.34	272	9.7	61.2
8	28.21	1.83	0.00	71.96	19.69	8.35	Silty-Sand	0.058	0.588	0.156	34.4	2.3	1.51	203	8.1	40.3
9	23.14	1.95	0.00	82.17	11.59	6.25	Sand	0.051	0.606	0.111	24.4	2.5	1.08	208	6.8	30.2
10	23.95	1.93	0.00	83.57	10.57	5.85	Sand									
11	23.39	1.94	0.00	84.66	9.84	5.50	Sand	0.045	0.463	0.099	25.0	1.4	1.11	187	8.4	28.9
12	26.09	1.88	0.00	99.09	0.64	0.27	Sand	0.013	0.141	0.039	8.7	1.8	0.38	76	6.0	9.8
13	30.93	1.78	0.00	95.70	3.13	1.17	Sand	0.020	0.241	0.053	17.4	BDL	0.85	265	8.8	18.1
14	30.48	1.78	0.00	87.62	8.11	4.27	Sand	0.037	0.406	0.110	25.3	1.8	1.14	193	10.6	28.1
15	25.59	1.89	0.00	98.36	1.64	0.00	Sand	0.012	0.139	0.036	9.5	BDL	0.44	98	BDL	11.3
16	21.35	1.99	0.05	91.74	4.51	3.70	Sand	0.054	0.509	0.101	20.8	3.5	0.84	169	4.1	23.0
17	22.62	1.96	0.00	99.37	0.64	0.00	Sand									
18	29.08	1.81	0.00	92.81	4.04	3.15	Sand	0.038	0.916	0.089	15.6	0.7	0.82	255	3.9	20.6
19	26.45	1.87	0.00	96.19	2.62	1.20	Sand	0.021	0.211	0.051	11.8	0.5	0.57	120	2.2	15.2
20	20.65	2.01	0.00	97.34	2.66	0.00	Sand									
21	24.04	1.92	0.00	97.83	2.17	0.00	Sand									
22	22.57	1.96	0.00	79.63	14.82	5.55	Sand	0.036	0.363	0.105	23.7	1.3	1.02	196	5.1	25.4
23	22.52	1.96	0.00	75.63	17.78	6.59	Sand	0.042	0.460	0.127	27.6	1.6	1.24	162	7.0	34.0
24	24.35	1.92	0.00	81.51	13.43	5.07	Sand	0.033	0.369	0.107	25.5	1.8	1.17	218	6.0	29.7
25	24.90	1.90	0.00	77.23	16.40	6.37	Sand	0.038	0.399	0.121	31.7	1.6	1.40	244	11.8	34.8
26	23.12	1.95	0.00	71.89	21.26	6.86	Silty-Sand									
27	41.77	1.58	0.00	13.80	63.68	22.52	Clayey-Silt	0.095	1.091	0.377	66.6	7.5	2.96	317	22.7	73.3
28	29.65	1.80	0.00	61.49	27.44	11.07	Silty-Sand	0.053	0.606	0.179	36.2	4.6	1.57	167	16.5	40.3
29	24.71	1.91	0.00	77.85	13.79	8.35	Sand									
30	59.27	1.35	0.00	1.12	55.35	43.53	Clayey-Silt	0.209	2.481	1.198	93.2	11.7	4.29	290	30.4	97.4

F

							ediment samp or the metals an					U	•			
				0			dicated by blar		1 1 4010		pponar		- 110y 51	r cours	e grunne	, a
I				Textura			<u> </u>				Che	mical Da	ta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard"s (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr μg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn μg/g
31	59.06	1.35	0.00	5.57	52.63	41.80	Clayey-Silt	0.200	2.341	1.204	83.7	11.3	3.91	252	32.6	93.2
32	49.28	1.47	0.00	2.95	64.10	32.95	Clayey-Silt	0.140	1.729	0.652	77.9	9.8	3.71	271	17.5	89.0
33	54.90	1.40	0.00	5.98	54.03	39.98	Clayey-Silt	0.156	1.814	0.481	90.4	10.6	4.17	308	33.4	106.2
34	47.22	1.50	0.00	2.80	59.38	37.83	Clayey-Silt	0.127	1.509	0.579	70.2	8.1	3.26	255	21.4	82.2
35	46.77	1.51	0.00	4.38	56.96	38.66	Clayey-Silt	0.140	1.650	0.436	89.4	9.7	3.92	311	27.6	102.3
36	50.22	1.46	0.00	3.63	60.04	36.34	Clayey-Silt	0.143	1.603	0.440	94.3	8.6	3.99	344	31.7	98.8
37	53.20	1.42	0.00	6.64	53.66	39.70	Clayey-Silt	0.158	1.843	0.508	89.0	10.9	3.94	315	25.1	99.8
38	42.39	1.57	0.00	40.74	38.00	21.26	Sand-Silt-Clay	0.108	1.282	0.313	61.2	6.8	2.82	267	18.2	67.8
39	40.12	1.61	0.00	36.37	39.75	23.88	Sand-Silt-Clay	0.092	1.111	0.309	60.7	6.1	2.55	221	17.7	69.9
40	42.88	1.57	0.00	9.02	67.07	23.91	Clayey-Silt	0.108	1.224	0.390	70.8	6.2	3.03	295	21.9	77.8
41	40.70	1.60	0.00	20.03	60.75	19.21	Sandy-Silt	0.098	1.068	0.318	59.0	4.9	2.58	283	20.1	65.8
42	25.36	1.89	0.00	97.93	2.07	0.00	Sand	0.012	0.130	0.043	8.5	BDL	0.42	116	BDL	13.1
43	26.95	1.86	0.00	94.45	4.26	1.29	Sand	0.017	0.159	0.052	15.3	BDL	0.74	239	4.3	18.0
44	19.59	2.03	0.00	94.43	4.33	1.24	Sand									
45	25.95	1.88	0.00	96.09	2.97	0.94	Sand	0.016	0.138	0.046	13.2	BDL	0.60	163	5.6	14.9
46	25.57	1.89	0.00	94.72	3.80	1.47	Sand	0.022	0.264	0.047	12.0	BDL	0.58	133	6.1	14.9
47	19.61	2.03	0.00	97.42	2.58	0.00	Sand									
50	23.70	1.93	0.00	69.59	23.79	6.62	Silty-Sand	0.043	0.458	0.129	28.3	3.3	1.19	154	8.7	33.6
51	34.71	1.70	0.00	49.35	38.79	11.86	Silty-Sand	0.088	0.882	0.198	38.8	3.5	1.71	289	9.0	45.1
52	22.22	1.97	0.00	84.80	12.48	2.72	Sand									
53	23.99	1.93	0.00	96.46	2.99	0.54	Sand									
54	27.43	1.85	0.00	96.99	2.05	0.96	Sand	0.017	0.151	0.049	11.3	0.9	0.55	113	4.3	15.4
55	25.58	1.89	0.00	97.93	1.55	0.53	Sand	0.054	0.411	0.062	12.0	1.1	0.58	124	BDL	17.5
56	24.94	1.90	0.00	70.73	21.99	7.28	Silty-Sand	0.044	0.479	0.113	30.0	2.4	1.27	186	6.3	35.6
57	35.84	1.68	0.00	25.48	57.09	17.44	Sandy-Silt	0.071	0.824	0.259	47.7	5.3	2.09	236	11.3	55.4
58	41.17	1.59	0.00	10.07	68.00	21.93	Clayey-Silt	0.091	1.029	0.319	59.0	6.8	2.57	270	10.4	67.6
59	40.72	1.60	0.00	40.64	39.15	20.21	Sand-Silt-Clay	0.090	1.102	0.331	53.8	6.8	2.35	196	12.0	63.2
59r	37.10	1.66	0.00	33.86	43.08	23.07	Sand-Silt-Clay	0.082	1.029	0.300	55.9	5.8	2.33	217	10.2	62.8

"below	detect	ion limit	." Ave	rage det	tection l	imits fo	ediment samp or the metals and dicated by blar	re listed in				0	•			
sampic			yzeu ioi	Textura			dicated by blai	ik cens.			Che	mical Da	ta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard"s (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr µg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn μg/g
60	39.53	1.62	0.00	40.57	36.97	22.46	Sand-Silt-Clay	0.092	1.068	0.264	58.7	7.4	2.46	217	11.3	65.9
60r	30.50	1.78	0.00	58.45	27.04	14.52	Silty-Sand	0.064	1.001	0.173	39.0	5.3	1.71	164	8.1	45.2
61	27.52	1.85	0.00	68.59	21.41	10.00	Silty-Sand	0.060	0.630	0.141	36.9	3.4	1.63	168	4.2	41.7
61r	29.17	1.81	0.00	66.88	21.71	11.41	Silty-Sand	0.061	0.662	0.155	38.6	4.4	1.73	176	7.7	43.7
62	41.29	1.59	0.00	31.53	43.14	25.32	Sand-Silt-Clay	0.106	1.291	0.295	68.4	7.4	2.94	251	17.3	75.4
62r	41.29	1.59	0.00	31.87	42.51	25.62	Sand-Silt-Clay	0.111	1.312	0.299	72.4	7.2			14.7	79.6
63	47.48	1.50	0.00	3.68	60.30	36.02	Clayey-Silt	0.130	1.569	0.356	82.3	8.9	3.55	285	22.3	91.2
64	50.61	1.45	0.00	5.68	57.61	36.72	Clayey-Silt	0.141	1.637	0.387	88.2	10.1	3.69	323	20.5	98.5
65	48.04	1.49	0.00	4.82	60.23	34.95	Clayey-Silt	0.146	1.707	0.509	79.8	10.3	3.41	253	21.2	93.3
66	42.24	1.58	0.00	21.66	49.70	28.64	Sand-Silt-Clay	0.117	1.391	0.351	70.7	8.8	3.05	260	18.1	77.6
67	42.38	1.57	0.00	7.43	58.17	34.40	Clayey-Silt	0.125	1.537	0.337	83.6	9.4	3.52	294	21.3	91.9
68	45.35	1.53	0.00	7.37	59.11	33.52	Clayey-Silt	0.024	0.230	0.061	17.5	1.4	0.80	139	6.5	20.8
69	36.77	1.67	0.00	38.07	38.70	23.24	Sand-Silt-Clay	0.093	1.590	0.261	57.5	6.3	2.54	234	13.3	65.3
70	42.30	1.57	0.00	15.21	55.35	29.43	Clayey-Silt	0.114	1.368	0.378	72.7	8.4	3.07	239	22.7	83.4
71	39.38	1.62	0.00	14.18	61.52	24.31	Clayey-Silt	0.085	1.025	0.425	66.4	7.6	2.72	291	22.2	69.2
72	36.95	1.66	0.00	16.22	65.09	18.68	Clayey-Silt	0.075	0.867	0.284	55.8	7.1	2.43	270	12.4	62.6
73	34.96	1.70	0.00	28.53	57.27	14.20	Sandy-Silt	0.068	0.829	0.260	53.6	4.9	2.26	265	14.6	58.9
74	24.93	1.90	0.00	53.75	36.48	9.77	Silty-Sand	0.050	0.584	0.209	41.0	4.5	1.69	242	13.7	43.7
75	26.45	1.87	0.00	76.19	18.29	5.52	Sand	0.040	0.413	0.115	28.7	2.3	1.28	223	14.0	34.8
76	20.73	2.01	0.00	95.71	3.06	1.24	Sand									
77	28.98	1.82	0.00	97.45	2.14	0.40	Sand	0.017	0.143	0.047	12.4	0.9	0.56	138	6.5	15.3
78	21.21	1.99	0.00	92.93	4.82	2.25	Sand									
79	30.06	1.79	0.00	55.59	33.59	10.82	Silty-Sand	0.067	0.695	0.203	42.9	4.9	1.77	243	17.6	47.1
80	45.25	1.53	0.00	26.79	50.97	22.25	Sand-Silt-Clay	0.121	1.324	0.487	64.3	9.2	2.53	259	14.4	74.2
81	33.79	1.72	0.00	49.32	37.55	13.14	Silty-Sand	0.091	0.988	0.328	46.8	7.1	1.87	223	21.7	53.7
82	25.48	1.89	0.00	81.37	12.78	5.85	Sand	0.046	0.468	0.137	25.2	3.9	1.03	139	5.9	29.7
83	24.76	1.91	0.00	79.66	13.38	6.96	Sand	0.052	0.511	0.135	28.3	5.2	1.16	156	8.2	34.1
84	20.78	2.00	0.00	97.44	1.78	0.78	Sand									

Table 2	X. Te	xtural an	d chem	ical dat	a for su	rficial s	ediment samp	les collect	ted in th	e midd	le Chin	coteagu	ıe Bay.	BDL r	efers to	
"below	detect	ion limit	." Ave	rage det	tection l	imits fo	or the metals a	re listed in	n Table	XIV (A	ppendi	x III). I	Fifty-siz	x coarse	e-graine	ed
sample	s were	not anal	yzed for	r chemi	stry, and	d are in	dicated by blar	nk cells.								
				Textura	l Data		-				Che	mical Da	ıta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard''s (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr µg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn µg/g
85	21.50	1.99	0.00	98.17	1.31	0.52	Sand									
86	27.24	1.85	0.00	97.00	2.29	0.71	Sand	0.014	0.110	0.043	9.3	1.8	0.35	97	4.6	10.1
87	26.94	1.86	0.00	90.04	6.99	2.97	Sand	0.028	0.277	0.063	15.6	3.0	0.66	146	6.8	18.4
88	19.98	2.02	0.00	94.34	4.15	1.52	Sand									
89	21.09	2.00	0.00	92.01	5.82	2.17	Sand									
90	20.33	2.02	0.00	85.03	11.35	3.62	Sand									
91	29.49	1.80	0.00	52.89	34.28	12.83	Silty-Sand	0.062	0.701	0.222	44.4	4.5	1.94	252	16.5	48.3
92	32.97	1.74	0.00	27.07	55.90	17.03	Sandy-Silt	0.076	0.816	0.262	51.1	6.5	2.27	259	9.4	57.9
93	30.55	1.78	0.00	38.03	50.13	11.84	Sandy-Silt	0.053	0.614	0.222	42.5	5.2	1.90	248	12.5	46.4
94	39.75	1.62	0.00	10.73	65.12	24.15	Clayey-Silt	0.104	1.266	0.446	70.1	9.3	2.91	290	19.0	74.9
95	36.22	1.68	0.00	36.60	46.70	16.69	Sandy-Silt	0.073	0.847	0.289	48.4	5.4	2.09	219	16.6	54.0
96	42.80	1.57	0.00	15.10	55.42	29.48	Clayey-Silt	0.113	1.351	0.336	77.6	9.1	3.36	313	25.2	82.6
97	48.52	1.48	0.00	6.01	58.07	35.92	Clayey-Silt	0.129	1.552	0.342	87.0	10.3	3.71	338	27.1	93.2
98	46.41	1.51	0.00	18.01	48.55	33.44	Clayey-Silt	0.132	1.502	0.291	81.2	10.4	3.67	298	25.2	93.6
99	46.86	1.51	0.00	2.95	66.40	30.65	Clayey-Silt	0.144	1.605	0.442	76.2	10.6	3.35	259	25.3	87.1
100	22.82	1.95	0.00	90.87	5.78	3.35	Sand	0.031	0.286	0.078	16.7	3.6	0.69	98	5.9	18.3
101	19.84	2.03	0.00	86.22	7.48	6.30	Sand									
102	52.72	1.43	0.00	2.60	57.45	39.96	Clayey-Silt	0.154	1.719	0.362	88.4	12.7	3.72	271	29.0	104.9
103	47.62	1.50	0.00	8.02	59.03	32.95	Clayey-Silt	0.128	1.539	0.332	90.2	10.9	3.63	338	29.0	97.7
104	43.89	1.55	0.00	8.17	60.63	31.20	Clayey-Silt	0.121	1.440	0.392	73.8	8.3	3.32	314	17.8	83.7
105	35.82	1.68	0.00	23.69	59.84	16.47	Sandy-Silt	0.072	0.825	0.270	52.4	5.1	2.43	275	16.2	55.5
106	45.18	1.53	0.00	14.24	61.89	23.87	Clayey-Silt	0.098	1.092	0.325	67.9	6.9	3.05	350	19.3	74.0
107	29.70	1.80	0.00	39.34	45.63	15.03	Sandy-Silt	0.068	0.726	0.286	48.8	4.6	2.18	249	15.3	53.1
108	23.77	1.93	0.00	77.49	16.64	5.88	Sand	0.039	0.374	0.111	27.9	2.2	1.27	201	6.6	32.7
109	26.03	1.88	0.00	84.36	13.09	2.55	Sand	0.038	0.385	0.088	24.1	0.9	1.15	231	5.0	27.8
110	29.69	1.80	0.00	96.14	2.92	0.94	Sand	0.021	0.256	0.049	11.6	BDL	0.56	116	BDL	13.8
111	24.60	1.91	0.00	96.18	2.89	0.93	Sand				21.0	2.2	0.93	164	3.9	26.2
112	29.97	1.79	0.00	78.30	17.29	4.41	Sand	0.066	0.703	0.152						

Table X	K. Te	xtural an	d chem	ical dat	a for su	rficial s	ediment sampl	les collect	ted in th	e midd	le Chin	coteagu	ıe Bay.	BDL r	efers to	
"below	detect	ion limit	." Ave	rage det	tection l	imits fo	or the metals an	re listed in	n Table	XIV (A	ppendi	x III). 🛛	Fifty-siz	x coarse	e-graine	ed
samples	s were	not anal	yzed for	r chemi	stry, and	d are in	dicated by blar	nk cells.								
				Textura	ıl Data						Che	mical Da	ta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard''s (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr μg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn μg/g
114	26.20	1.88	0.00	98.17	1.51	0.32	Sand	0.015	0.110	0.042	9.1	BDL	0.42	84	BDL	10.1
115	19.51	2.04	0.00	99.00	1.05	-0.05	Sand									
118	31.33	1.77	0.00	50.11	42.47	7.41	Silty-Sand									
119	20.25	2.02	0.00	97.53	2.23	0.24	Sand									
120	21.10	2.00	0.00	78.31	15.87	5.83	Sand	0.044	0.441	0.101	29.1	2.3	1.32	227	6.4	33.6
121	22.76	1.95	0.00	67.94	23.81	8.25	Silty-Sand									
122	34.79	1.70	0.00	27.66	52.48	19.85	Sandy-Silt	0.078	1.035	0.319	58.0	6.6	2.72	265	19.7	64.2
123	29.33	1.81	0.00	18.40	66.19	15.41	Sandy-Silt	0.072	0.890	0.287	49.6	7.4	2.30	215	14.3	55.9
124	39.28	1.62	0.00	25.34	58.74	15.93	Sandy-Silt	0.073	0.870	0.255	53.8	6.0	2.46	344	17.5	56.4
125	40.88	1.60	0.00	12.55	65.47	21.98	Clayey-Silt	0.092	1.152	0.318	66.8	8.4	2.97	290	16.9	72.4
126	45.63	1.52	0.00	9.15	60.30	30.55	Clayey-Silt	0.120	1.473	0.427	85.3	10.2	3.72	324	23.7	91.0
127	46.10	1.52	0.00	8.22	56.30	35.48	Clayey-Silt	0.123	1.475	0.344	89.1	9.9	3.98	335	18.0	97.2
128	39.58	1.62	0.00	37.51	39.29	23.20	Sand-Silt-Clay	0.094	1.094	0.221	62.8	8.0	2.72	248	15.5	68.0
129	26.31	1.87	0.00	92.63	4.13	3.23	Sand	0.023	0.236	0.047	14.1	2.2	0.64	76	BDL	15.5
130	53.25	1.42	0.00	1.03	57.68	41.29	Clayey-Silt	0.149	1.711	0.359	93.5	12.3	4.14	286	26.4	110.7
131	50.00	1.46	0.00	11.17	46.66	42.17	Clayey-Silt	0.147	1.664	0.303	98.9	12.9	4.21	299	27.9	112.6
132	48.19	1.49	0.00	4.52	58.06	37.42	Clayey-Silt	0.154	1.792	0.555	91.4	21.3	3.92	260	27.2	110.4
133	46.40	1.51	0.00	16.87	53.27	29.86	Clayey-Silt	0.127	1.485	0.415	71.4	14.1	3.19	211	17.3	84.5
134	51.44	1.44	0.00	12.41	49.56	38.03	Clayey-Silt	0.143	1.713	0.367	96.2	15.4	4.04	288	20.5	105.6
135	50.38	1.46	0.00	5.27	55.83	38.90	Clayey-Silt	0.144	1.724	0.280	88.6	11.8	4.00	282	25.9	104.5
136	45.17	1.53	0.00	9.13	61.26	29.61	Clayey-Silt	0.120	1.418	0.283	88.4	11.0	3.77	326	19.9	92.6
137	46.36	1.51	0.00	3.05	61.86	35.09	Clayey-Silt	0.132	1.583	0.295	82.6	12.5	3.75	275	23.1	94.2
138	34.57	1.71	0.00	49.32	30.56	20.11	Sand-Silt-Clay	0.079	0.908	0.158	56.5	8.9	2.47	252	19.4	60.1
139	25.20	1.90	0.00	95.52	2.66	1.82	Sand	0.016	0.169	0.040	10.0	2.4	0.52	87	1.6	11.4
140	46.96	1.50	0.00	6.28	62.69	31.02	Clayey-Silt	0.116	1.419	0.352	84.5	11.2	3.51	304	28.2	88.4
141	45.36	1.53	0.00	8.67	58.96	32.37	Clayey-Silt	0.111	1.374	0.389	82.3	9.0	3.51	315	20.5	90.7
142	43.46	1.56	0.00	7.39	63.37	29.24	Clayey-Silt	0.106	1.351	0.303	75.9	9.1	3.30	282	25.2	86.3
143	36.47	1.67	0.00	19.63	62.59	17.78	Sandy-Silt	0.075	0.962	0.281	60.8	6.8	2.61	287	21.0	66.2

							ediment sampl					U	•			
"below	detect	ion limit	." Ave	rage det	tection l	imits fo	or the metals an	re listed in	n Table	XIV (A	ppendi	x III). I	Fifty-siz	x coarse	e-graine	ed
sample	s were	not anal	yzed for	r chemi	stry, and	d are in	dicated by blar	nk cells.								
				Textura	ıl Data						Che	mical Da	ıta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard''s (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr µg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn μg/g
144	20.00	2.02	0.00	67.66	25.41	6.93	Silty-Sand	0.050	0.368	0.060	24.6	2.5	1.07	168	10.2	27.8
145	23.46	1.94	0.00	64.35	27.93	7.72	Silty-Sand	0.054	0.479	0.085	33.6	3.1	1.44	207	10.8	36.5
146	29.02	1.81	0.00	37.63	50.00	12.37	Sandy-Silt	0.068	0.650	0.180	44.5	2.7	2.05	244	10.8	50.4
147	37.66	1.65	0.00	25.33	55.19	19.48	Sandy-Silt	0.087	0.918	0.286	62.7	5.7	2.55	275	17.2	67.9
148	20.83	2.00	0.00	81.73	14.16	4.11	Sand									
149	28.13	1.83	0.00	97.63	1.80	0.57	Sand	0.014	0.125	0.038	9.5	1.3	0.38	74	1.7	12.2
150	23.93	1.93	0.00	89.82	7.84	2.34	Sand									
151	38.71	1.63	0.00	44.90	39.29	15.81	Silty-Sand	0.090	1.007	0.540	48.5	4.8	2.04	221	14.6	57.9
152	25.46	1.89	0.00	75.29	17.47	7.24	Sand	0.048	0.621	0.162	27.3	2.1	1.17	148	2.4	32.0
153	26.59	1.87	0.00	92.48	6.64	0.89	Sand	0.015	0.124	0.044	10.8	1.2	0.51	87	1.1	14.5
154	21.55	1.98	0.00	95.43	3.37	1.20	Sand									
155	23.63	1.93	0.00	89.97	7.21	2.82	Sand	0.025	0.284	0.060	19.3	1.8	0.92	179	1.0	23.9
156	29.49	1.80	0.00	42.74	44.13	13.13	Sandy-Silt	0.059	0.693	0.290	52.6	4.5	2.16	285	15.5	54.5
157	29.60	1.80	0.04	43.97	42.83	13.16	Silty-Sand	0.064	0.794	0.240	49.8	4.9	2.10	249	10.2	54.9
158	26.75	1.86	0.00	49.70	39.62	10.68	Silty-Sand	0.047	0.574	0.186	39.8	3.4	1.74	260	10.3	43.6
159	27.21	1.85	0.00	54.71	34.64	10.66	Silty-Sand	0.050	0.543	0.161	40.3	4.0	1.75	279	5.2	42.9
160	26.24	1.87	0.00	85.09	11.84	3.07	Sand	0.019	0.276	0.055	11.9	2.0	0.54	122	BDL	13.7
161	38.44	1.64	0.00	16.04	65.20	18.75	Clayey-Silt	0.078	0.932	0.291	60.7	7.6	2.49	283	17.3	63.7
162	41.89	1.58	0.00	11.93	65.66	22.40	Clayey-Silt	0.102	1.280	0.405	68.0	9.1	2.88	289	17.9	76.2
163	43.74	1.55	0.00	9.40	64.79	25.81	Clayey-Silt	0.106	1.286	0.287	63.6	8.6	2.69	261	16.8	75.0
164	41.93	1.58	0.00	18.57	54.09	27.34	Clayey-Silt	0.105	1.289	0.322	65.8	9.3	2.75	235	15.8	77.9
165	40.29	1.61	0.00	13.84	59.29	26.88	Clayey-Silt	0.107	1.253	0.274	78.5	8.8	0.23	11	20.2	82.4
166	40.58	1.60	0.00	8.90	67.13	23.97	Clayey-Silt	0.098	1.173	0.266	71.5	8.1	3.07	305	18.5	76.2
167	42.94	1.56	0.00	6.80	67.77	25.44	Clayey-Silt	0.106	1.242	0.305	72.2	9.4	3.13	306	10.5	79.9
168	45.46	1.53	0.00	13.58	55.06	31.36	Clayey-Silt	0.142	1.630	0.354	78.5	10.9	3.32	289	27.0	88.0
169	41.70	1.58	0.00	22.29	49.57	28.14	Sand-Silt-Clay	0.122	1.545	0.411	70.5	9.1	2.99	226	14.4	79.8
170	46.82	1.51	0.00	4.43	64.27	31.31	Clayey-Silt	0.122	1.494	0.314	75.0	11.5	3.20	279	21.8	89.2
171	44.19	1.55	0.00	6.56	62.13	31.30	Clayey-Silt	0.115	1.372	0.289	81.8	10.2	3.34	298	23.9	88.7

							ediment samp or the metals an					U	•			
				0			dicated by blar			211 V (21	ppendi	л ш).	1 11ty 31	A COULS	5 graine	u
sumpre			<u> </u>	Textura							Che	mical Da	ta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard's (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr μg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn μg/g
172	44.29	1.54	0.00	12.22	59.26	28.53	Clayey-Silt	0.110	1.284	0.287	67.7	7.3	3.08	297	20.9	78.1
173	31.14	1.77	0.00	48.23	31.41	20.37	Sand-Silt-Clay	0.080	0.971	0.228	50.8	7.0	2.30	233	15.7	56.5
174	45.29	1.53	0.00	14.74	55.43	29.82	Clayey-Silt	0.117	1.420	0.373	76.9	9.6	3.45	340	20.9	83.5
175	37.69	1.65	0.00	13.17	61.29	25.54	Clayey-Silt	0.099	1.157	0.345	69.7	9.1	3.15	325	24.0	76.5
176	37.52	1.65	0.00	29.96	51.00	19.04	Sandy-Silt	0.078	0.973	0.290	56.8	5.2	2.60	302	12.7	64.1
177	24.24	1.92	0.00	51.67	38.36	9.97	Silty-Sand	0.043	0.536	0.128	39.4	1.2	1.89	284	1.2	42.5
178	36.79	1.67	0.00	37.19	47.23	15.58	Sandy-Silt	0.075	0.905	0.259	46.8	4.1	2.21	235	6.6	55.1
179	24.33	1.92	0.00	61.84	28.24	9.92	Silty-Sand	0.042	0.452	0.149	31.4	2.7	1.49	184	2.5	37.2
180	19.72	2.03	0.00	92.33	5.50	2.17	Sand									
181	26.59	1.87	0.00	71.98	19.65	8.37	Silty-Sand	0.048	0.460	0.125	29.9	1.6	1.40	203	9.0	36.7
182	27.17	1.85	0.00	92.91	5.53	1.56	Sand	0.027	0.720	0.046	12.3	BDL	0.64	168	-2.8	16.5
183	31.56	1.76	0.00	85.14	11.59	3.27	Sand	0.039	0.404	0.112	20.4	BDL	0.99	180	7.1	23.2
184	25.92	1.88	0.00	72.93	18.10	8.97	Silty-Sand	0.054	0.600	0.150	32.0	1.9	1.48	237	9.6	37.7
185	23.22	1.94	0.00	74.85	18.60	6.55	Silty-Sand									
186	22.46	1.96	0.00	76.05	17.11	6.84	Sand	0.043	0.429	0.115	29.3	3.0	1.37	207	2.4	35.1
187	33.42	1.73	0.00	74.68	19.89	5.44	Silty-Sand	0.050	3.392	0.102	21.5	0.8	1.16	210	-4.5	25.5
189	23.64	1.93	0.00	58.74	33.20	8.06	Silty-Sand									
190	31.01	1.77	0.00	30.20	54.63	15.17	Sandy-Silt	0.068	0.776	0.219	50.3	5.3	2.29	283	10.4	55.3
191	38.72	1.63	0.00	14.07	63.51	22.42	Clayey-Silt	0.084	1.051	0.327	62.4	7.4	2.80	285	15.2	67.9
192	40.39	1.61	0.00	18.71	58.76	22.53	Clayey-Silt	0.087	1.073	0.321	66.0	7.1	2.82	294	16.8	69.9
193	43.37	1.56	0.00	6.13	65.28	28.58	Clayey-Silt	0.116	1.372	0.338	77.4	8.1	3.21	291	16.7	85.3
194	40.83	1.60	0.00	24.64	46.12	29.24	Sand-Silt-Clay	0.128	1.380	0.281	69.7	7.0	3.03	249	18.4	80.2
195	40.21	1.61	0.00	33.72	39.26	27.02	Sand-Silt-Clay	0.124	1.372	0.271	66.4	8.3	2.86	234	19.9	75.6
196	46.97	1.50	0.00	4.65	62.20	33.15	Clayey-Silt	0.142	1.616	0.353	80.7	8.7	3.52	276	23.4	91.6
197	43.52	1.56	0.00	6.72	69.29	23.99	Clayey-Silt	0.109	1.231	0.242	72.7	7.2	3.11	316	22.8	74.7
198	41.12	1.59	0.00	15.69	60.53	23.78	Clayey-Silt	0.103	1.265	0.377	70.4	7.0	3.01	286	24.0	75.7
199	36.36	1.67	0.00	17.18	62.89	19.93	Clayey-Silt	0.088	1.145	0.375	66.5	6.7	2.86	293	14.0	69.2
200	34.31	1.71	0.00	26.58	57.15	16.27	Sandy-Silt	0.072	0.843	0.263	54.5	4.6	2.55	317	15.5	60.3

							ediment samp or the metals an					U	•			
				•			dicated by blar			AIV (A	ppenui	х Ш). Т	1°11ty-512	x coarse	-graine	Ju
sampie	5 WOIC	not unu	yzeu ioi	Textura			alcaled by bla				Che	mical Da	ta			
Comm1.	Water	Bulk	Gravel	Sand	Silt	Clay	Shepard"s (1954)	Nitrogen	Carbon	Sulfur	Cr	Cu	Fe	Mn	Ni	Zn
Sample ID	%	Density (g/cm ³)	%	%	%	%	Classification	%	%	%	μg/g	μg/g	%	µg/g	μg/g	µg/g
201	36.79	1.67	0.00	29.70	54.64	15.66	Sandy-Silt	0.070	0.809	0.253	53.1	5.0	2.55	324	14.9	57.5
202	26.02	1.88	0.00	44.55	44.01	11.44	Silty-Sand	0.039	0.626	0.130	38.4	2.8	1.89	263	12.8	45.6
203	25.80	1.88	0.00	52.02	37.61	10.36	Silty-Sand	0.040	0.873	0.159	41.8	3.0	1.98	304	9.5	44.8
204	30.51	1.78	0.00	75.03	19.74	5.23	Sand	0.028	0.449	0.113	30.1	2.4	1.48	261	4.2	33.4
205	20.32	2.02	0.00	81.91	13.45	4.64	Sand									
206	22.42	1.96	0.00	83.41	12.73	3.86	Sand	0.021	0.294	0.078	21.6	BDL	1.01	181	2.2	25.1
207	21.66	1.98	0.00	90.53	7.10	2.37	Sand	0.014	0.207	0.059	16.1	1.0	0.83	173	2.5	20.7
208	27.27	1.85	0.00	73.44	19.18	7.38	Silty-Sand	0.042	0.636	0.224	30.3	3.3	1.40	197	2.5	33.2
209	21.30	1.99	0.00	81.17	14.89	3.94	Sand	0.024	0.372	0.104	21.0	2.2	0.90	142	7.3	23.0
210	23.31	1.94	0.00	77.57	16.13	6.31	Sand									
211	22.55	1.96	0.00	87.19	9.80	3.01	Sand									
212	28.70	1.82	0.00	86.73	10.21	3.06	Sand	0.014	0.223	0.069	20.6	1.7	0.95	189	6.3	24.0
213	24.88	1.90	0.00	88.08	8.94	2.98	Sand									
214	35.14	1.70	0.00	58.32	33.11	8.58	Silty-Sand	0.038	0.552	0.157	40.5	2.9	1.86	320	6.3	43.4
215	24.06	1.92	0.00	44.39	43.92	11.69	Silty-Sand									
216	35.46	1.69	0.00	30.20	54.14	15.65	Sandy-Silt	0.060	0.836	0.240	58.6	5.7	2.57	333	14.4	63.9
217	29.32	1.81	0.00	25.38	58.58	16.04	Sandy-Silt	0.055	0.890	0.249	52.3	5.0	2.22	257	7.2	58.0
218	34.04	1.72	0.00	25.58	56.08	18.34	Sandy-Silt	0.058	0.870	0.255	57.4	6.4	2.59	300	13.8	61.8
219	36.36	1.67	0.00	24.98	55.87	19.15	Sandy-Silt	0.063	0.933	0.264	61.7	6.5	2.77	322	16.4	66.6
220	42.64	1.57	0.00	14.35	63.44	22.21	Clayey-Silt	0.087	1.290	0.411	64.1	8.4	2.86	281	18.2	71.8
221	39.31	1.62	0.00	7.45	66.61	25.94	Clayey-Silt	0.101	1.355	0.280	73.6	9.5	3.32	313	16.7	79.8
222	51.65	1.44	0.00	1.31	67.70	30.99	Clayey-Silt	0.131	1.660	0.486	79.8	11.4	3.65	324	22.3	86.7
223	49.15	1.47	0.00	4.62	61.85	33.53	Clayey-Silt	0.133	1.640	0.392	87.0	11.3	3.90	353	23.3	93.3
224	45.82	1.52	0.00	5.79	64.32	29.90	Clayey-Silt	0.112	1.416	0.313	77.8	10.6	3.39	311	21.1	86.3
225	39.59	1.62	0.00	25.17	54.97	19.86	Sandy-Silt	0.082	1.240	0.407	64.4	8.2	2.85	309	15.9	68.4
226	30.81	1.78	0.00	37.86	47.73	14.42	Sandy-Silt	0.049	0.848	0.211	48.1	4.9	2.27	297	8.3	56.2
227	33.24	1.73	0.00	36.50	44.28	19.22	Sandy-Silt	0.066	0.963	0.260	60.2	7.4	2.69	310	19.7	64.4
228	30.01	1.79	0.00	31.93	55.22	12.86	Sandy-Silt	0.042	0.626	0.192	43.9	4.7	2.03	254	13.8	48.8

"below	detect	ion limit	." Ave	rage det	tection l	imits fo	ediment samp or the metals and dicated by blar	re listed in				U	•			
sampie	s were	not anai	yzeu ioi	Textura			ulcated by blai	ik cells.			Chei	mical Da	ta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard's (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr μg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn μg/g
229	32.88	1.74	0.00	31.40	53.68	14.91	Sandy-Silt	0.062	0.745	0.253	48.4	5.9	2.18	219	15.4	55.0
230	33.97	1.72	0.00	32.85	50.02	17.13	Sandy-Silt	0.075	0.823	0.251	49.7	6.9	2.30	263	8.8	56.2
231	26.83	1.86	0.00	67.29	25.61	7.10	Silty-Sand	0.039	0.474	0.119	32.3	2.4	1.60	243	9.6	37.3
232	28.85	1.82	0.00	85.33	11.24	3.44	Sand	0.026	0.265	0.070	21.5	1.8	1.14	202	1.6	25.7
233	21.58	1.98	0.00	96.54	2.50	0.96	Sand									
234	23.57	1.94	0.00	77.62	16.07	6.31	Sand	0.043	0.439	0.108	33.1	3.4	1.57	270	9.8	35.4
235	25.24	1.90	0.00	94.82	3.69	1.49	Sand	0.017	0.689	0.058	12.9	1.7	0.68	130	BDL	13.4
236	36.42	1.67	0.00	91.93	6.37	1.70	Sand	0.038	0.359	0.071	12.7	2.1	0.63	65	3.3	16.1
237	33.64	1.72	0.00	83.85	11.94	4.21	Sand	0.057	0.567	0.075	18.1	2.4	0.78	93	8.4	21.8
238	27.99	1.84	0.00	96.23	2.46	1.31	Sand	0.016	0.143	0.041	10.7	1.6	0.46	37	5.3	13.5
239	22.04	1.97	0.00	87.58	7.89	4.54	Sand									
240	24.99	1.90	0.00	79.37	13.82	6.81	Sand	0.043	0.427	0.125	26.4	2.5	1.14	146	11.5	30.8
241	23.18	1.94	0.00	73.53	18.56	7.91	Silty-Sand									
242	21.72	1.98	0.00	85.92	9.84	4.25	Sand									
243	21.10	2.00	0.00	76.69	18.64	4.67	Sand									
244	24.80	1.91	0.00	53.35	34.49	12.16	Silty-Sand	0.050	0.550	0.151	37.9	3.4	1.68	221	4.1	42.7
245	36.71	1.67	0.00	29.06	54.13	16.80	Sandy-Silt	0.072	0.769	0.258	51.2	5.3	2.30	227	17.9	57.0
246	35.20	1.69	0.00	29.48	52.82	17.70	Sandy-Silt	0.073	0.856	0.277	52.7	6.1	2.40	243	17.0	60.4
247	33.25	1.73	0.00	34.37	51.05	14.58	Sandy-Silt	0.058	0.750	0.217	43.0	3.8	1.96	195	14.7	49.8
248	34.22	1.71	0.00	44.09	39.24	16.67	Silty-Sand	0.072	0.986	0.243	47.6	5.8	2.17	242	13.0	53.7
249	39.69	1.62	0.00	27.53	50.55	21.92	Sand-Silt-Clay	0.090	1.109	0.354	57.6	6.5	2.63	218	22.6	65.3
250	41.81	1.58	0.00	14.36	59.68	25.96	Clayey-Silt	0.104	1.325	0.411	69.2	7.7	3.05	280	25.5	72.7
251	39.19	1.62	0.00	16.70	57.09	26.21	Clayey-Silt	0.118	1.388	0.360	63.0	8.7	2.91	241	18.4	71.3
252	33.84	1.72	0.00	59.31	26.61	14.08	Silty-Sand	0.075	1.089	0.373	39.0	5.5	1.76	115	13.3	45.3
253	45.07	1.53	0.00	16.15	52.61	31.24	Clayey-Silt	0.123	1.437	0.318	81.5	9.6	3.41	295	25.8	87.3
254	28.83	1.82	0.00	56.77	30.42	12.81	Silty-Sand	0.056	0.622	0.176	43.5	3.8	1.92	230	15.2	47.2
255	46.87	1.51	0.00	15.80	52.42	31.79	Clayey-Silt	0.120	1.449	0.382	80.7	8.3	3.61	268	26.6	91.1
256	35.99	1.68	0.00	45.67	36.14	18.19	Silty-Sand	0.073	0.869	0.271	52.0	5.4	2.22	196	17.8	59.1

							ediment samp					0	•			
				0			or the metals a		n Table	XIV (A	ppendi	x III). 1	Fifty-siz	x coarse	e-graine	ed
samples	s were	not anal	yzed foi	r chemi	stry, and	l are in	dicated by blan	nk cells.								
				Textura	l Data						Che	mical Da	ita			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard''s (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr µg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn μg/g
257	37.72	1.65	0.00	34.66	44.09	21.25	Sand-Silt-Clay	0.084	1.167	0.308	59.7	6.4	2.50	209	19.8	66.7
258	36.32	1.67	0.00	35.79	45.44	18.77	Sandy-Silt	0.079	0.932	0.324	44.9	8.7	2.22	208	24.4	43.1
259	29.92	1.80	0.00	40.33	47.52	12.15	Sandy-Silt	0.061	0.699	0.233	42.9	3.4	2.08	262	15.1	49.7
260	33.40	1.73	0.00	46.04	41.34	12.62	Silty-Sand	0.056	0.590	0.164	43.6	3.7	2.15	325	16.4	48.8
261	27.89	1.84	0.00	70.83	22.31	6.86	Silty-Sand	0.039	0.437	0.111	29.2	2.4	1.39	231	5.3	30.6
262	22.54	1.96	0.00	66.56	26.00	7.44	Silty-Sand	0.036	0.388	0.114	30.1	2.0	1.43	195	13.5	34.0
263	20.94	2.00	0.00	83.11	11.97	4.92	Sand									
264	21.07	2.00	0.00	98.94	1.06	0.00	Sand									
265	22.31	1.97	0.00	97.83	2.17	0.00	Sand									
266	22.86	1.95	0.00	88.62	7.66	3.71	Sand									
267	29.78	1.80	0.00	98.57	1.43	0.00	Sand	0.012	0.102	0.039	10.2	BDL	0.49	106	7.0	10.0
268	57.90	1.36	0.00	3.15	53.72	43.13	Clayey-Silt	0.288	2.932	1.337	91.0	15.4	4.37	329	30.4	111.2
269	50.86	1.45	0.00	36.65	36.44	26.90	Sand-Silt-Clay	0.204	2.330	0.814	65.5	10.6	3.15	278	28.8	76.9
270	23.89	1.93	0.00	88.90	6.74	4.35	Sand									
271	24.99	1.90	0.00	97.25	1.81	0.94	Sand									
272	21.22	1.99	0.00	89.45	7.53	3.01	Sand	0.023	0.222	0.071	19.2	BDL	1.03	195	4.2	22.0
273	22.32	1.97	0.00	83.56	12.12	4.32	Sand									
274	29.54	1.80	0.00	85.58	11.12	3.30	Sand	0.030	0.272	0.085	25.5	BDL	1.31	260	8.2	26.0
275	30.67	1.78	0.00	60.88	30.95	8.17	Silty-Sand	0.046	0.458	0.131	38.7	1.7	1.99	348	12.2	41.1
276	24.08	1.92	0.00	64.44	28.85	6.71	Silty-Sand									
277	31.49	1.76	0.00	41.18	42.56	16.26	Sandy-Silt	0.072	0.842	0.211	54.9	4.0	2.79	472	15.6	56.4
278	28.55	1.82	0.00	35.91	46.84	17.25	Sandy-Silt	0.072	2.395	0.177	48.7	1.9	2.36	367	6.8	52.4
279	34.48	1.71	0.00	35.93	46.57	17.49	Sandy-Silt	0.074	1.860	0.235	52.1	3.4	2.32	301	10.1	55.2
280	31.91	1.76	0.00	36.70	44.49	18.82	Sandy-Silt	0.077	2.057	0.211	46.4	3.6	2.10	241	10.9	52.7
281	35.88	1.68	0.00	38.21	42.45	19.33	Sandy-Silt	0.078	0.962	0.304	53.1	5.4	2.31	231	14.0	60.5
282	33.35	1.73	0.15	52.95	31.11	15.79	Silty-Sand	0.069	0.791	0.207	50.8	3.5	2.15	238	17.6	54.7
283	44.01	1.55	0.00	14.37	52.94	32.69	Clayey-Silt	0.127	1.529	0.414	81.5	9.8	3.33	297	30.7	89.6
284	47.20	1.50	0.00	5.68	67.34	26.98	Clayey-Silt	0.153	1.859	0.598	72.8	9.7	3.08	265	24.9	83.1

"below	detect	ion limit	." Ave	rage det	ection l	imits fo	ediment samp or the metals and dicated by blar	re listed in				0	•			
1			-	Textura			5				Che	mical Da	ta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard"s (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr µg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn µg/g
285	46.90	1.51	0.00	4.37	62.64	32.99	Clayey-Silt	0.144	1.772	0.478	83.5	13.4	3.31	256	21.3	96.6
286	49.71	1.47	0.00	7.37	51.28	41.34	Clayey-Silt	0.157	1.846	0.390	91.8	13.7	3.79	272	26.5	105.8
287	42.86	1.57	0.00	3.41	75.05	21.55	Silt	0.102	1.153	0.276	61.5	9.1	2.62	230	11.9	70.2
288	36.58	1.67	0.00	22.44	55.64	21.92	Sand-Silt-Clay	0.098	1.178	0.234	59.6	6.5	2.39	244	15.1	66.4
289	43.79	1.55	0.00	17.31	50.55	32.14	Clayey-Silt	0.135	1.549	0.351	90.1	11.6	3.55	319	25.5	94.1
290	39.68	1.62	0.00	27.16	47.18	25.66	Sand-Silt-Clay	0.100	1.133	0.339	68.4	8.0	2.77	272	18.2	75.9
291	36.52	1.67	0.00	38.93	39.63	21.45	Sand-Silt-Clay	0.084	0.951	0.263	66.2	68.8	2.68	289	23.7	70.7
292	28.95	1.82	0.00	51.92	33.71	14.37	Silty-Sand	0.067	1.854	0.133	46.2	4.5	2.00	275	5.5	49.2
293	31.54	1.76	0.00	46.10	36.66	17.24	Silty-Sand	0.073	0.911	0.227	51.8	5.6	2.29	297	14.6	57.3
294	24.50	1.91	0.00	64.70	25.09	10.21	Silty-Sand									
295	33.83	1.72	0.00	62.16	29.36	8.48	Silty-Sand	0.045	0.840	0.134	33.5	2.5	1.60	262	9.6	38.1
296	22.92	1.95	0.00	63.44	28.07	8.49	Silty-Sand									
297	24.54	1.91	0.00	61.84	28.41	9.75	Silty-Sand	0.054	0.586	0.173	37.0	2.5	1.61	235	11.3	41.7
298	24.51	1.91	0.00	70.14	21.35	8.51	Silty-Sand									
299	21.56	1.98	0.00	97.39	2.61	0.00	Sand									
300	26.52	1.87	0.00	88.67	7.36	3.98	Sand	0.044	0.483	0.099	19.7	2.0	0.91	159	BDL	24.4
301	26.60	1.87	0.00	95.87	2.95	1.19	Sand	0.016	0.163	0.048	10.5	BDL	0.53	97	BDL	14.4
303	29.04	1.81	0.00	55.95	31.50	12.55	Silty-Sand	0.056	0.692	0.160	42.0	4.5	1.85	263	13.6	47.6
304	38.90	1.63	0.43	26.39	49.83	23.35	Sand-Silt-Clay	0.094	1.075	0.298	71.1	8.9	3.10	367	28.1	74.5
305	40.88	1.60	0.00	12.89	58.08	29.03	Clayey-Silt	0.110	1.319	0.379	82.0	8.8	3.52	351	27.3	83.6
306	43.50	1.56	0.00	13.17	54.81	32.02	Clayey-Silt	0.118	1.433	0.363	78.4	11.0	3.45	364	30.1	88.4
307	35.42	1.69	0.00	39.54	37.08	23.38	Sand-Silt-Clay	0.102	1.166	0.260	61.7	8.5	2.76	278	21.6	67.5
308	43.24	1.56	0.00	10.96	62.52	26.52	Clayey-Silt	0.113	1.344	0.409	70.0	8.9	3.07	306	26.3	75.9
309	47.44	1.50	0.00	8.55	56.33	35.12	Clayey-Silt	0.149	1.871	0.416	95.7	13.5	4.25	361	36.8	103.2
310	44.80	1.54	0.00	20.12	50.06	29.82	Sand-Silt-Clay	0.140	1.797	0.494	68.9	12.2	3.06	250	27.3	85.0
312	20.68	2.01	0.00	95.26	4.74	0.00	Sand									
313	29.64	1.80	0.00	52.39	38.56	9.05	Silty-Sand	0.074	0.764	0.216	39.8	4.7	1.67	234	17.1	44.2
315	52.92	1.42	0.00	9.17	50.11	40.72	Clayey-Silt	0.164	1.907	0.573	96.8	12.5	4.03	317	36.1	104.5

							ediment sampler the metals an					•	•			
samples	s were	not anal	yzed for	r chemi	stry, and	d are in	dicated by blar	nk cells.								
				Textura	l Data						Che	mical Da	ta			
	Water	Bulk	Gravel	Sand	Silt	Clay	Shepard"s (1954)	Nitrogen	Carbon	Sulfur	Cr	Cu	Fe	Mn	Ni	Zn
Sample ID	%	Density (g/cm ³)	%	%	%	%	Classification	%	%	%	μg/g	μg/g	%	μg/g	μg/g	µg/g
316	46.12	1.52	0.00	4.89	64.79	30.33	Clayey-Silt	0.113	1.305	0.347	76.1	9.3	3.28	274	23.8	86.5
317	48.19	1.49	0.00	4.62	57.44	37.94	Clayey-Silt	0.140	1.613	0.408	90.9	11.0	3.93	306	32.5	102.2
318	44.89	1.54	0.00	6.50	62.67	30.83	Clayey-Silt	0.124	1.394	0.340	83.7	10.0	3.62	328	28.0	90.6
319	39.80	1.61	0.00	23.21	50.82	25.97	Sand-Silt-Clay	0.104	1.227	0.301	70.3	8.9	2.97	267	27.6	79.1
320	44.83	1.54	0.00	8.08	60.06	31.85	Clayey-Silt	0.122	1.474	0.374	79.2	10.1	3.43	318	30.0	90.2
321	33.37	1.73	0.00	27.64	49.68	22.68	Sand-Silt-Clay	0.091	1.037	0.273	65.8	7.2	2.75	295	24.4	71.0
322	30.91	1.78	0.00	30.14	51.72	18.14	Sandy-Silt	0.071	0.815	0.268	51.5	5.8	2.20	235	19.0	54.6
323	47.25	1.50	0.00	9.76	53.35	36.89	Clayey-Silt	0.132	1.544	0.362	88.1	10.9	3.74	321	29.9	97.9
324	45.67	1.52	0.00	3.64	61.70	34.66	Clayey-Silt	0.142	1.604	0.377	83.6	11.4	3.72	322	28.1	96.0
325	26.30	1.87	0.00	95.15	2.85	2.00	Sand	0.015	0.143	0.036	13.0	0.9	0.56	123	7.5	13.1
326	45.45	1.53	0.00	8.38	60.77	30.85	Clayey-Silt	0.140	1.663	0.489	76.6	10.0	3.27	293	29.2	79.1
327	28.98	1.82	0.00	97.27	1.61	1.12	Sand	0.013	0.101	0.030	8.3	1.5	0.29	71	8.5	8.1
328	27.02	1.86	0.00	59.51	25.73	14.75	Silty-Sand	0.066	0.827	0.200	43.2	6.3	1.81	189	17.1	46.6
329	24.11	1.92	0.00	75.19	18.38	6.43	Sand									
331	24.69	1.91	0.00	78.68	17.23	4.09	Sand	0.041	0.389	0.066	23.5	3.4	0.99	153	12.5	27.4
332	19.00	2.05	0.00	96.52	3.48	0.00	Sand									
333	20.34	2.02	0.00	95.44	4.56	0.00	Sand									
334	24.43	1.92	0.00	79.28	14.53	6.19	Sand									
336	29.22	1.81	0.00	97.37	2.63	0.00	Sand	0.016	0.131	0.038	10.9	1.0	0.43	79	12.0	12.1
337	28.16	1.83	0.00	65.95	23.39	10.67	Silty-Sand	0.069	0.714	0.210	35.6	4.8	1.47	176	8.4	40.1
338	31.64	1.76	0.00	44.04	43.07	12.89	Silty-Sand	0.084	0.867	0.337	42.1	4.3	1.79	202	13.2	47.8
340	24.69	1.91	0.00	64.59	25.87	9.54	Silty-Sand	0.063	0.704	0.161	33.6	3.1	1.42	178	15.0	36.3
341	25.11	1.90	0.00	83.34	12.05	4.61	Sand	0.048	0.518	0.078	19.5	1.9	0.85	127	7.8	21.7
342	24.78	1.91	0.00	90.58	5.31	4.11	Sand	0.042	0.419	0.119	19.2	2.1	0.79	121	12.1	20.0
344	41.60	1.59	0.00	64.24	24.61	11.16	Silty-Sand	0.078	4.648	0.015	23.3	1.5	1.19	401	1.2	27.8
345	32.90	1.74	0.00	67.20	20.24	12.56	Silty-Sand	0.081	0.928	0.208	42.6	4.9	1.68	176	14.6	46.2
346	44.86	1.54	0.00	7.94	56.99	35.07	Clayey-Silt	0.135	1.632	0.366	86.2	10.8	3.48	329	27.0	92.8
347	47.10	1.50	0.00	24.12	43.38	32.50	Sand-Silt-Clay	0.128	1.494	0.335	82.7	10.0	3.26	272	31.3	86.6

Table X. Textural and chemical data for surficial sediment samples collected in the middle Chincoteague Bay. BDL refers to "below detection limit." Average detection limits for the metals are listed in Table XIV (Appendix III). Fifty-six coarse-grained samples were not analyzed for chemistry, and are indicated by blank cells.

			-	Textura	ıl Data						Cher	mical Da	ta			
Sample ID	Water %	Bulk Density (g/cm ³)	Gravel %	Sand %	Silt %	Clay %	Shepard''s (1954) Classification	Nitrogen %	Carbon %	Sulfur %	Cr μg/g	Cu µg/g	Fe %	Mn μg/g	Ni µg/g	Zn μg/g
348	54.67	1.40	0.00	5.89	54.41	39.70	Clayey-Silt	0.173	2.028	0.701	90.5	12.1	3.85	291	23.0	97.5
349	54.34	1.41	0.00	2.23	68.25	29.52	Clayey-Silt	0.203	2.650	1.111	82.2	11.5	3.47	257	24.3	94.4
350	28.29	1.83	0.00	74.53	15.57	9.90	Silty-Sand	0.076	0.762	0.224	31.7	4.3	1.23	130	11.8	37.0
351	57.14	1.37	0.00	2.87	54.00	43.13	Clayey-Silt	0.223	2.873	0.772	76.3	11.8	3.10	271	26.6	95.8
353	22.50	1.96	0.00	65.23	32.50	2.27	Silty-Sand	0.024	0.226	0.054	18.5	BDL	0.86	199	BDL	18.3

Appendix III - Quality Assurance/Quality Control

- Textural analyses
- NCS analyses
- Metal analyses

Textural Analyses- Quality Assurance/Quality Control

Although the techniques used to determine grain size are based on traditional analytical methods developed for the sedimentology lab, some analytical error is inherent to the techniques. For example, results can be affected by level of technician skill and/or changes in laboratory conditions (such as sudden temperature changes). Furthermore, there is no standard reference material available that includes the broad range of particle sizes and shapes contained in a natural sediment. To maximize consistency of textural analysis, several "checks" are used to monitor results. The calculated sand, silt, clay, (and gravel) percentages are checked against 1)sample field descriptions; 2) calculated water contents; and 3) calculated weight loss of sample during cleaning process. These comparisons are made to determine if the size components match the visual description of the sample and/or fall within an expected range of values for water content and weight loss. Any discrepancy is "flagged"and the results are further reviewed to determine if re-analysis is warranted. In addition, new technicians analyze, as their first samples, a suite of randomly selected samples that have been analyzed previously (by an experience technician) and the results are compared.

The criteria for each of the internal checks are as follows:

1) Calculated sand, silt, clay, (and gravel) percentages and Shepard's classification of the sediments are compared to the visual description (both field description and lab description). This criteria is fairly straightforward. If the results indicate an entirely different sample than what was described when collected, then the sample is re-analyzed.

2) Percentages are compared to calculated water contents. Table XI lists the expected ranges of water content for each sediment type. Mean and ranges are based on sediments collected in Isle of Wight and Assawoman Bays.

3) Sample loss (% dry weight) during cleaning is calculated for each sample. The calculated water content, which usually is measured immediately after the sample is collected, is used to determine weight loss. If the sediment dried out, even slightly, before it was sub-sampled for textural analysis, then the amount of weight loss would be under estimated, and, in some instances, negative. The degree of weight loss during the cleaning process is related to sediment type (grain size) as well as the organic content of the sediment. Organic rich, fine grained sediments (*i.e.*, silty clay and clayey silt) may lose up to 30% dry weight during the cleaning process. Sand, which is fairly clean, usually yields the smallest weight loss, and often shows a negative weight loss due to error inherent to water content determinations. Table XI lists the ranges of weight loss percentages for each group of sediments. Mean and ranges are based on sediments collected in Isle of Wight and Assawoman Bays

Table XI. Mean and range of water contents and calculated weight loss after cleaning for each sediment type (Shepard's Classification) based on sediments collected in Isle of Wight and Assawoman Bays (Wells and others, 1994b). Means are rounded to nearest whole percentage. Range values are based on standard deviation from the mean.

	Water content ((% wet weight)	Weight loss (%	6 dry weight)
Sediment Type	Mean	Range	Mean	Range
SAND	22	17 - 27	1	-4 - 6
SILTY SAND	39	31 - 47	7	2 - 12
CLAYEY SAND	47	41 - 53	3	0 -6
SANDY SILT	48	42 - 54	13	5 - 21
CLAYEY SILT	60	53 - 67	20	13 - 27
SILTY CLAY	70	67 - 73	28	23 - 33
SAND SILT CLAY	56	49 - 63	13	2 - 24

For this study, 42 (12% of total samples) surficial samples were duplicated for textural analyses and 1 samples was analyzed for a third time (triplicate). Table XII lists the results of the replicated analyses. Thirty-four of the 42 duplicates analyses yielded sand, silt, clay percentages within 5% of their first analyses. Of the ones that did not, most exceeded 5% differences in silt and sand content, which reflect the differences in technicians' sieving skills. These differences are not surprising because these sediments contained very fine sand and coarse silt, particles sizes matching the diameter of the mesh opening in the sieve used. As a result, sieving these samples was very difficult.

				-	e (designated by <i>re</i> erences in textural	,	± `	,	l analyses of selected surficial samples.
Sample	%	%	%	%	Shepard's	Δ	Δ	Δ	
ID	Water	Sand	Silt	Clay	Classification	Sand	Silt	Clay	Comments
16	43.34	92.67	4.06	3.27	Sand				
16 redo	21.35	91.74	4.51	3.70	Sand	0.93	0.45	0.43	No change in classification
35	49.80	1.52	70.82	27.66	Clayey-Silt	2.69	14.45	11.75	No change in classification, but high silt% in
35 redo	46.77	4.38	56.96	38.66	Clayey-Silt	2.86	13.86	11.00	first analysis was suspect; accepted 2 nd and 3 rd results, results of first analysis attributed
35 T	46.77	4.21	56.37	39.41	Clayey-Silt	0.17	0.59	0.76	to pipetting error.
46	25.57	94.85	5.15	0.00	Sand				
46 redo	25.57	94.72	3.80	1.47	Sand	0.13	1.35	1.47	No change in classification
58	41.17	10.07	68.00	21.93	Clayey-Silt				No change in classification; difference in
58 redo	41.17	18.43	59.04	22.53	Clayey-Silt	8.36	8.96	0.60	Sa:Si ratio
59	40.72	40.64	39.15	20.21	Sand-Silt-Clay				
59 redo	40.72	39.40	38.32	22.28	Sand-Silt-Clay	1.24	0.83	2.07	No change in classification
59R	37.10	33.86	43.08	23.07	Sand-Silt-Clay				
59R redo	37.10	34.65	41.46	23.89	Sand-Silt-Clay	0.79	1.62	0.83	No change in classification
60	39.53	40.57	36.97	22.46	Sand-Silt-Clay				
60 redo	34.37	40.41	36.50	23.09	Sand-Silt-Clay	0.15	0.47	0.62	No change in classification
60R	30.50	58.45	27.04	14.52	Silty-Sand				
60R redo	28.91	57.46	25.88	16.67	Silty-Sand	0.99	1.16	2.15	No change in classification
62	41.29	31.53	43.14	25.32	Sand-Silt-Clay				
62 redo	41.29	31.87	42.51	25.62	Sand-Silt-Clay	0.34	0.64	0.30	No change in classification
62R	41.66	25.24	46.91	27.85	Sand-Silt-Clay				
62R redo	41.66	25.27	47.47	27.26	Sand-Silt-Clay	0.03	0.56	0.59	No change in classification
63	47.48	3.68	60.30	36.02	Clayey-Silt				
63 redo	47.48	3.73	60.43	35.84	Clayey-Silt	0.05	0.13	0.18	No change in classification
64	50.61	5.68	57.61	36.72	Clayey-Silt				
64 redo	50.61	5.67	58.35	35.98	Clayey-Silt	0.00	0.74	0.74	No change in classification

		L		-	•	,	1 '	,	al analyses of selected surficial samples.
Replicate	e samples	having g	reater that	n 5% diff	erences in textural	parameter	s are bol	ded.	
Sample	%	%	%	%	Shepard's	Δ	Δ	Δ	
ID	Water	Sand	Silt	Clay	Classification	Sand	Silt	Clay	Comments
65	48.04	4.82	60.23	34.95	Clayey-Silt				
65 redo	48.04	4.84	60.21	34.95	Clayey-Silt	0.02	0.01	0.00	No change in classification
66	42.24	21.66	49.70	28.64	Sand-Silt-Clay				
66 redo	42.24	21.75	49.62	28.63	Sand-Silt-Clay	0.09	0.08	0.01	No change in classification
86	27.24	97.00	2.29	0.71	Sand				
86 redo	27.24	96.64	3.36	0.00	Sand	0.36	1.07	0.71	No change in classification
87	26.94	90.04	6.99	2.97	Sand				
87 redo	26.94	89.65	7.13	3.22	Sand	0.40	0.14	0.25	No change in classification
94	39.75	10.73	65.12	24.15	Clayey-Silt				
94 redo	39.75	13.54	61.23	25.24	Clayey-Silt	2.80	3.89	1.09	No change in classification
118	31.33	50.11	42.47	7.41	Silty-Sand				
118 redo	31.33	54.30	36.79	8.91	Silty-Sand	4.19	5.68	1.49	No change in classification
122	34.79	27.66	52.48	19.85	Sandy-Silt				Change in classification due to difference in
122 redo	34.79	34.88	43.97	21.14	Sand-Silt-Clay	7.22	8.51	1.29	Sa:Si ratio; attributed to sieving technique
131	50.00	11.27	48.23	40.50	Clayey-Silt				
131 redo	50.00	11.17	46.66	42.17	Clayey-Silt	0.10	1.57	1.67	No change in classification
172	44.29	12.22	59.26	28.53	Clayey-Silt				
172 redo	44.29	16.12	54.38	29.50	Clayey-Silt	3.90	4.88	0.97	No change in classification
182	27.17	92.91	5.53	1.56	Sand				
182 redo	27.17	94.97	5.03	0.00	Sand	2.06	0.50	1.56	No change in classification
184	25.92	73.21	18.95	7.83	Silty-Sand				
184 redo	25.92	72.93	18.10	8.97	Silty-Sand	0.28	0.85	1.14	No change in classification
187	33.42	74.68	19.89	5.44	Silty-Sand				Change in classification due to slight difference
187 redo	33.42	75.11	18.81	6.08	Sand	0.43	1.07	0.64	in sand percentages
195	40.21	33.72	39.26	27.02	Sand-Silt-Clay				No change in classification

		-		-		,	± `	,	al analyses of selected surficial samples.
Replicate	e samples	having gi	reater that	n 5% diffe	erences in textural	parametei	s are bol	ded.	
Sample	%	%	%	%	Shepard's	Δ	Δ	Δ	
ID	Water	Sand	Silt	Clay	Classification	Sand	Silt	Clay	Comments
195 redo	40.21	33.65	38.11	28.24	Sand-Silt-Clay	0.07	1.15	1.22	
214	35.14	58.32	33.11	8.58	Silty-Sand				
214 redo	35.14	62.16	28.96	8.88	Silty-Sand	3.85	4.15	0.30	No change in classification
219	36.36	24.98	55.87	19.15	Sandy-Silt				Change in classification due to slight difference
219 redo	36.36	27.48	52.33	20.19	Sand-Silt-Clay	2.50	3.55	1.04	in Sa:Si ratios
257	37.72	34.66	44.09	21.25	Sand-Silt-Clay				
257 redo	37.72	37.94	40.60	21.46	Sand-Silt-Clay	3.28	3.49	0.21	No change in classification
268	57.90	3.15	53.72	43.13	Clayey-Silt				
268 redo	57.90	3.92	52.19	43.89	Clayey-Silt	0.77	1.53	0.76	No change in classification
278	28.55	35.91	46.84	17.25	Sandy-Silt				Change in classification due to difference in
278 redo	28.55	42.93	39.02	18.05	Silty-Sand	7.01	7.81	0.80	Sa:Si ratios
279	34.48	35.93	46.57	17.49	Sandy-Silt				Change in classification due to difference in
279 redo	34.48	42.03	39.42	18.55	Silty-Sand	6.10	7.15	1.05	Sa:Si ratios
280	31.91	36.70	44.49	18.82	Sandy-Silt				Change in classification due to slight
280 redo	31.91	41.81	38.62	19.57	Silty-Sand	5.11	5.86	0.76	difference in Sa:Si ratios
287	42.86	3.41	75.05	21.55	Silt				Change in classification due to slight change in
287 redo	42.86	4.96	71.56	23.48	Clayey-Silt	1.56	3.49	1.93	silt percentage
292	28.95	51.92	33.71	14.37	Silty-Sand				
292 redo	28.95	53.04	31.50	15.46	Silty-Sand	1.12	2.21	1.09	No change in classification
303	29.04	55.95	31.50	12.55	Silty-Sand				
303 redo	29.04	59.74	28.48	11.78	Silty-Sand	3.79	3.03	0.76	No change in classification
304	38.90	26.39	49.83	23.35	Sand-Silt-Clay				No change in classification; difference in
304 redo	38.90	31.32	44.59	23.64	Sand-Silt-Clay	4.93	5.24	0.29	Sa:Si ratio
310	44.80	20.12	50.06	29.82	Sand-Silt-Clay				
310 redo	44.80	20.09	49.03	30.82	Sand-Silt-Clay	0.03	1.02	1.00	No change in classification

	-	-		-	e (designated by <i>rea</i> erences in textural				al analyses of selected surficial samples.
Sample ID	% Water	% Sand	% Silt	% Clay	Shepard's Classification	Δ Sand	Δ Silt	Δ Clay	Comments
336	29.22	97.37	2.63	0.00	Sand				
336 redo	29.22	97.31	2.69	0.00	Sand	0.06	0.06	0.00	No change in classification
344	41.60	64.24	24.61	11.16	Silty-Sand				
344 redo	41.60	66.97	23.17	9.87	Silty-Sand	2.73	1.44	1.29	No change in classification
346	44.86	7.94	56.99	35.07	Clayey-Silt				
346 redo	44.86	10.27	54.08	35.65	Clayey-Silt	2.33	2.91	0.57	No change in classification
347	47.10	24.12	43.38	32.50	Sand-Silt-Clay				
347 redo	47.10	25.69	40.87	33.44	Sand-Silt-Clay	1.56	2.51	0.94	No change in classification
349	54.34	2.23	68.25	29.52	Clayey-Silt				
349 redo	54.34	2.48	67.76	29.75	Clayey-Silt	0.25	0.49	0.23	No change in classification

Nitrogen, Carbon and Sulfur Analyses- Quality Assurance/Quality Control

As part of the QA/QC protocol, a NIST reference material (NIST SRM #1646 - Estuarine Sediment) is used as a secondary standard, run every 6 to 7 samples (unknowns). Table XIII presents the comparisons of the MGS results and the certified values for total carbon, nitrogen and sulfur contents for the NIST standard. There is excellent agreement between the NIST values and MGS's results. Recoveries averaged 100% that of certified values. Detection limit for this method is 0.001% for nitrogen, carbon and sulfur (.

Table XIII. Results of nitrogen, carbon, and sulfur analyses of NIST-SRM #1646 (Estuarine Sediment) compared to the certified or known values. MGS values were obtained by averaging the results of all SRM analyses (n=51) run during this study. All samples (surficial and core) were analyzed over a four week period.

Element Analyzed	Certified Values* (% by weight)	MGS Results (this study)
Nitrogen	0.18	0.18 ±0.01
Carbon	1.72	1.71 ±0.03
Sulfur	0.96	1.05 ±0.05

* The value for carbon is certified by NIST. The sulfur value is the non-certified value reported by NIST. The value of nitrogen was obtained from repeated analyses in-house and by other laboratories (Haake Buchler Labs and U.S. Dept. of Agriculture).

Metal Analyses- Quality Assurance/Quality Control

For metal analyses, quality control was maintained using the method of bracketing standards (Van Loon, 1980). Blanks were run every 12 samples. Replicates of every tenth sample were run. A set of reference materials (NIST #1646, NIST #2704, and PACS-1) was analyzed every ten to fifteen samples. Results of the analyses of the three standard reference materials are compared to the certified values in Tables XIV and XV. Separate SRM results are presented for surficial samples and core samples because the two sediment sets were analyzed at different times

The MGS's results indicate better than 90% recovery for most of the metals and better than 85% for all metal except Mn. The lower recovery values for Mn (ES and PAC) may be due to incomplete digestion during sample preparation or matrix problem during analysis.

Table XIV. Results of metal analyses of standard reference materials compared to the certified values for metal analyses of the core sediments.													
	Cert	ified Val	ues	MGS R	esults								
Metals	BR*	ES*	PAC*	BR*	% recovery	ES*	% recovery	PAC*	% recovery				
Cr (µg/g)	135 ±5	40.9 ±1.9	113 ±8	131.8 ±4.27	97.6	44.1 ±1.75	107.9	108.9 ±4.45	96.4				
Cu (µg/g)	98.5 ±5	10.0 ±0.34	452 ±16	97.2 ±3.84	98.6	9.4 ±1.31	93.7	433.0 ±23.91	100.2				
Fe (%)	4.11 ±0.1	2.01 ±0.04	4.87 ±0.12	4.03 ±0.21	98.0	1.98 ±0.11	98.6	4.59 ±0.28	94.3				
Mn (µg/g)	555 ±19	234.5 ±2.8	470 ±12	540 ±25.8	97.4	173 ±9.63	73.9	336 ±19.40	71.6				
Ni (µg/g)	44.1 ±3	23 ^T	44.1 ±2	39.2 ±2.95	89.0	21.2 ±2.82	92.3	42.1 ±2.5	95.4				
Zn (µg/g)	438 ±12	48.9 ±1.6	824 ±22	429.1 ±14.3	98.0	43.2 ±1.61	88.4	797.8 ±27.4	96.8				

*BR = NIST-SRM #2704 - Buffalo River Sediment

*ES = NIST SRM #1646a - Estuarine Sediment

*PAC= National Research Council of Canada PACS-1 - Marine Sediment

^T Noncertified value reported by NIST

ſ

certified va	lues for r	netal an	alyses of	the surfic	ial sedim	ents.			
Metals	Cert	ified Va	lues			MGS	Results		
	BR*	ES*	PAC*	BR*	% recovery	ES*	% recovery	PAC*	% recovery
Cr	135	40.9	113	129.3	95.8	43.3	105.8	113.1	100.1
(µg/g)	±5	±1.9	±8	±2.5		±1.8		±4.1	
Cu	98.5	10.0	452.0	100.0	101.5	9.2	91.5	461.7	102.2
(µg/g)	±5	±0.3	±16	±3.6		±0.7	2 - 12	±19.5	
Fe	4.11	2.01	4.87	4.12	100.1	2.10	104.7	4.96	101.8
(%)	±0.1	± 0.04	±0.12	±0.24	10011	±0.21	10 117	±0.24	10110
Mn	555	234.5	470	547	98.5	190.3	81.2	370	78.8
(µg/g)	±19	±2.8	±12	±28		±50.9		±25	
Ni	44.1	23 ^T	44.10	39.8	90.4	20.8	90.6	40.5	91.7
$(\mu g/g)$	±3		±2	±4.4		±3.0		±4.4	
Zn	438	48.9	824.0	444.4	101.5	44.5	91.0	837.4	101.6
(µg/g)	±12	±1.6	±22	±6.3		±7.0		±10.8	

Table XV. Results of metal analyses of standard reference materials compared to the certified values for metal analyses of the surficial sediments.

*BR = NIST-SRM #2704 - Buffalo River Sediment

*ES = NIST SRM #1646a - Estuarine Sediment

*PAC= National Research Council of Canada PACS-1 - Marine Sediment

^T Noncertified value reported by NIST

Table XVI. Average detection limits for the metals based on the methods used in this study. Detection limits were derived from a Quality Assurance/Quality Control study conducted by Hill and others (1997).

Metal	BKG ¹ (µg/g)	WQ-MGS ² ($\mu g/g$)
Cr	0.3	0.17
Cu	0.2	0.39
Fe	0.00	0.00
Mn	0.00	0.67
Ni	2.0	2.77
Zn	1.7	1.20

¹ Based on surficial sediments collected around Poplar Island for back ground assessment.

² Based on surficial sediments collected at the water quality sites around Poplar Island.