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Artificial fill
Heterogeneous unconsolidated materials including sand, gravel, clay, slag, construction debris, and dredge spoil. Only major 
areas of �lled ground have been mapped.

Alluvium
Boulders, cobbles, gravel, sand, silt, and clay of varied composition and sorting. Boulders and cobbles are present in high-
er-gradient stream channels and consist of amphibolite, varieties of felsic gneiss, granitic pegmatite, vein quartz, and subor-
dinate ultrama�c rock types and anthropogenic materials. Sand and gravel are typically well-bedded but also occur in poorly 
sorted deposits with cobbles and boulders. Deposits in lower-gradient channels are dominated by poorly sorted mud, 
polymict sand, and silt, and in some places include abundant organic material. Deposits inter�nger with sparse colluvium at 
the bases of some slopes and in some upland gathering areas. 

Thickness approximately 0 to 15 ft.

Terrace and upland deposits
Interbedded gravel, sand, silt, and clay with rare cobbles and boulders. Adjacent to streams near the Fall Line (approximate 
boundary between the Coastal Plain and Piedmont physiographic provinces), deposits are chie�y gravel dominated by 
quartz and quartzite, with minor clasts of lithologically diverse crystalline rock, all in a matrix of sand with minor clay and silt. 
Abundant layered, coarse sand occurs locally. Along the banks of the Patapsco River downstream of the most eastward 
exposure of Relay Felsite, and on adjacent uplands to the south and north, unit is chie�y medium to coarse quartzose sand 
with minor to abundant gravel and rare isolated boulders of varying lithology.

Thickness approximately 3-40 ft.

Potomac Group

Kpc  clay-silt
Clay, silt, and subordinate �ne to medium-grained sand with clay and silt. Clay-silt deposits range from sandy 
clay to nearly pure kaolinitic clay. Includes subordinate lenses of quartzose, poorly sorted sand with abundant 
clay and silt.

Kps  sand-gravel
Interbedded sand, pebbly sand, gravel, and subordinate silt and clay. Sands range from �ne- to coarse-grained 
and are predominantly quartzose. Gravels are predominantly vein quartz and quartzite. Silt and clay typically 
occur as thin or massive lenses or as matrix material. Deposits are commonly iron-oxide-stained and may be 
weakly cemented.

Sediments occur as a thin veneer draped along the Mid-Atlantic Fall Line (approximate boundary between the Coastal Plain 
unconsolidated sediments and the Piedmont bedrock) in the northwest of the quadrangle, and gradually thicken to the 
southeast, eventually reaching over 700 ft in thickness in the southeast corner of the quadrangle (Hansen and Edwards, 
1986).

Pegmatitic granite
Pinkish-orange muscovite-microcline-albite-quartz pegmatitic granite locally with garnet. Commonly forms isolated, round-
ed outcrops that protrude from hillsides and weather to very dark brownish gray. Generally occurs as swarms of anastomos-
ing tabular bodies intruding Mt. Washington Amphibolite, although geometries of individual bodies are variable and com-
monly irregular. Bodies range from several inches to hundreds of feet in thickness. Both swarms and individual bodies gener-
ally parallel the foliation of the rocks they intrude, although individual bodies commonly cut across wall rock foliation and 
layering. Locally exhibits layering de�ned by variations in grain size, composition, and texture. 

Unit cuts all other crystalline rock units in the Relay Quadrangle. Absolute age of unit is uncertain.

Note: unit is mapped where pegmatitic granite constitutes at least 50% of bedrock.

Ellicott City Granodiorite
Pinkish-gray, medium- to coarse-grained, foliated biotite granodiorite. Subordinate quartz monzonite occurs within the 
interiors of intrusive bodies exposed to the north and west of the Relay Quadrangle (Hopson, 1964). The unit consists chie�y 
of plagioclase, quartz, K-feldspar (mostly microcline), and biotite. Epidote, allanite, apatite, titanite, zircon, monazite, and 
magnetite occur as accessory minerals (Hopson, 1964). The unit is porphyritic at some locations, with pinkish microcline 
phenocrysts up to an inch long. Inclusions consisting predominantly of plagioclase and biotite are common in the granodio-
rite, and appear to be highly sheared and �attened. Within the Relay Quadrangle, the unit is poorly exposed within a seem-
ingly continuous, irregular mass that intrudes the Mt. Washington Amphibolite ca. ½ mile southeast of where the Patapsco 
River enters the quadrangle, although nearby �oat indicates the likely existence of additional unmapped masses.

U-Pb geochronology by SIMS on zircons extracted from Ellicott City Granodiorite yielded ages of 363 ± 10 Ma and 369 ± 4 Ma 
(Sinha et al., 2012).

Note: unit is mapped where Ellicott City Granodiorite constitutes at least 50% of bedrock.

Cold Spring Gneiss
Biotite-muscovite-microcline-quartz-plagioclase gneiss and schistose gneiss. Occurs as large masses along the Druid Hill 
Amphibolite-Mt. Washington Amphibolite contact and as swarms of smaller dikes and sills that intrude the Druid Hill Amphi-
bolite, Mt. Washington Amphibolite, and possibly the Relay Felsite. The gneiss is typically �ne- to medium-grained, with 
feldspar augen ranging from several millimeters to one centimeter in length. Sparse, quartz-rich layers with abundant mus-
covite and subordinate biotite occur locally. The gneiss is mylonitic and garnetiferous at locations along Soapstone Branch. 
At multiple locations proximate to the contact between Cold Spring Gneiss material and adjacent units, outcrops expose a 
chaotic assemblage of heavily sheared layers and lenses of rocks separated by sharp contacts and commonly cut by veins of 
quartz and quartzofeldspathic material. The heavily sheared rocks include ma�c and felsic lithologies including biotite schist, 
chlorite schist, and serpentinite, although alteration to clay minerals typically obscures the original mineralogy.

U-Pb geochronology by LA-ICP-MS on zircons extracted from a felsic gneiss sample yielded ages that do not constitute a 
single population (likely due to inherited zircons and Pb loss) but form a statistical probability peak at 482 Ma (Fig. 2C).

Note: Areas mapped as Cold Spring Gneiss may include a considerable proportion of Relay Felsite or felsic gneiss associated 
with Druid Hill Amphibolite, as the varieties of felsic gneiss are commonly di�cult to distinguish in the �eld. Unit is mapped 
where Cold Spring Gneiss constitutes at least 50% of bedrock.

Relay Felsite
Fine- to medium-grained, layered and massive quartz-plagioclase gneiss with minor, varying abundances of biotite and 
hornblende. Locally the gneiss contains minor magnetite, muscovite, chlorite, epidote, and/or garnet. Includes both massive 
and layered varieties, with textures ranging from granoblastic, to well foliated, to mylonitic. Quartz commonly occurs as 
rounded to elongated blebs and as veins and irregular blobs in some cases tens of feet in thickness. Large, zoned and 
twinned plagioclase crystals are common. Outcrops are cut by numerous joints of seemingly random orientation, and range 
widely in color from dark gray and reddish-brown to pinkish-tan to very pale pinkish-gray.

At the base of the Relay Felsite, amphibolite occurs interlayered with felsic gneiss and increases in abundance to the west, 
forming a gradational contact between the Relay Felsite and Druid Hill Amphibolite. The base of the Relay Felsite is mapped 
immediately east of the easternmost appearance of interlayered amphibolite. Relay Felsite reaches at least 1200 ft in thick-
ness within the Relay Quadrangle; the total thickness of the unit is unknown as its eastern contact is buried by Coastal Plain 
sediments. 

U-Pb geochronology results for the Relay Felsite from this (Fig. 2B) and other studies suggest a complex history of deposi-
tional, intrusive, and metamorphic events (see discussion).

Note: Areas mapped as Relay Felsite may include a considerable proportion of Cold Spring Gneiss, as the two units are 
di�cult to distinguish in the �eld.

Druid Hill Amphibolite
Chie�y �ne-to medium-grained, layered and massive amphibolite and subordinate quartzo-feldspathic gneiss. Amphibolite 
consists predominantly of plagioclase and hornblende, with varying abundances of actinolite and quartz, and subordinate 
pyroxene. Amphibolite is generally well foliated and commonly includes distinct anastomosing zones of coarser-grained 
amphibolite. 

Texturally and compositionally various felsic rocks, including gneiss, schistose gneiss, and granofels, occur as lenses and 
layers within the amphibolite and as irregular blobs and veins that cut amphibolite layering. Lenses and layers range from 
less than an inch to tens of feet in thickness. At many locations, the felsic rocks resemble Relay Felsite, consisting primarily of 
plagioclase or plagioclase and quartz, with varying minor abundances of biotite and hornblende and locally with minor 
magnetite, muscovite, chlorite, epidote, and/or garnet. Where the amphibolite and felsic rocks resembling Relay Felsite are 
interlayered, contacts between layers range from sharp to gradational, and at some locations the two rock types exhibit clear 
inter�ngering relationships. At other locations felsic rocks resembling Relay Felsite cut amphibolite layering. In a well 
exposed section along the south bank of the Patapsco River just west of Interstate-95, the proportion of felsic layers and 
lenses sharply increases to the east until no amphibolite remains, at which point the rocks are mapped as Relay Felsite. At 
various locations within the map unit and most abundantly along Soapstone Branch, rocks occur that more closely resemble 
gneiss and schistose gneiss of the Cold Spring Gneiss, consisting primarily of quartz, plagioclase, and varying abundances of 
microcline, biotite and muscovite. Felsic rocks that resemble Cold Spring Gneiss occur within the amphibolite as concordant 
lenses and layers with sharp contacts and as irregular masses that cut amphibolite layering. Layers and lenses of biotite 
schist, garnetiferous at some locations, commonly occur along contacts between amphibolite and rocks resembling Cold 
Spring Gneiss. Due to limited outcrop exposure and similarities in mineralogy and overall appearance, the diversity and 
spatial distribution of felsic rocks occurring within this map unit remain incompletely characterized, as do structural and 
genetic relationships between the various felsic rocks and the amphibolite.

qtz  quartzite
Highly resistant, quartz-rich rock. The unit crops out as a seemingly continuous, SSW-striking, steeply dipping 
lenticular body at least 1000 ft long and 75 ft thick along the western �ank of Soapstone Branch. Most 
outcrops appear to consist of nearly pure quartz deposited as veins, although one outcrop includes zones of 
quartzite interlayered with garnet-chlorite-muscovite schist layers ranging from a few millimeters to several 
centimeters in thickness. Mineralogy and layering are interpreted as evidence of a metasedimentary protolith 
for at least a portion of the unit. The unit is heavily fractured, sheared, and veined. Layering within the quartz-
ite roughly parallels the orientation of the overall lens, as well as foliations in adjacent outcrops of gneiss to 
the west and gneiss and amphibolite to the east. The relationships between the quartzite lens and adjacent 
gneiss and amphibolite are unclear, as contacts between the quartzite lens and enclosing rocks are not 
exposed.

U-Pb geochronology by LA-ICP-MS on zircons extracted from a sample of interlayered quartzite and 
garnet-chlorite-muscovite schist yielded ages that do not constitute a single population (possibly due to Pb 
loss) but form a statistical probability peak at 480 Ma (Fig. 2A).

chl  chlorite schist
Talc-chlorite granofels and medium- to coarse-grained talc-chlorite schist locally with relic pyroxene. In addi-
tion to map-scale bodies, numerous similar bodies ranging in thickness from less than an inch to tens of feet 
occur as layers and lenses within the Druid Hill Amphibolite.

The nature and existence of the contact separating the Druid Hill Amphibolite and Mt. Washington Amphibolite remains 
enigmatic. The Druid Hill Amphibolite appears to be around 1500 ft thick, although the exact thickness is di�cult to deter-
mine as no section exists for which the locations of both the upper and lower contacts are con�dently known. 

The absolute age of the Druid Hill Amphibolite remains unclear, although it must be similar to the age of Relay Felsite rocks 
into which it grades (see discussion). 

Mt. Washington Amphibolite
Predominantly �ne- to medium-grained, layered and massive amphibolite. Includes subordinate layers of actinolite hornfels, 
actinolite granofels, and actinolite schist; rare layers of �ne- to medium-grained pyroxenite, locally with garnet; and rare 
zones up to tens of feet thick of chlorite granofels and coarse-grained chlorite schist with relic pyroxene. Amphibolite 
consists predominantly of plagioclase and hornblende, with varying abundances of actinolite and quartz, and locally with 
pyroxene. Locally, garnet occurs within amphibolite along contacts with felsic rocks. The amphibolite is generally well foliat-
ed, although large (tens of feet thick) zones of massive amphibolite occur as isolated outcrops in several locations. Amphibo-
lite commonly includes distinct layers and/or anastomosing zones of coarser-grained amphibolite up to several inches in 
thickness. The unit includes minor intermediate and felsic rocks that include biotite-microcline-quartz-plagioclase schist, 
plagioclase-rich amphibolite, hornblende-feldspar gneiss, and other feldspathic and quartzo-feldspathic rocks. These inter-
mediate and felsic rocks occur as layers within the amphibolite and as irregular blobs and veins that cut amphibolite layer-
ing. In a few locations, ma�c and felsic components form a very hard, resistant rock with a migmatitic texture. 

chl  chlorite schist
Talc-chlorite granofels and medium- to coarse-grained talc-chlorite schist with relic pyroxene. In addition to 
map-scale bodies, numerous similar bodies of smaller size occur within the Mt. Washington Amphibolite.

The lower contact of the formation is not exposed within the Relay Quadrangle. The thickness of the formation is unknown.

Sinha et al., 1997 analyzed two zircon fractions separated from a plagiogranite and two from a quartz gabbro and obtained a 
TIMS U-Pb upper intercept age of 489 ± 7 Ma. This age is in agreement with a 490 ± 20 Ma Sm-Nd model age reported by 
Shaw and Wasserburg (1984) based on three rock samples.
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Figure 1. Traces of contacts separating Cretaceous and 
younger units (except Quaternary alluvium and select 
portions of terrace and upland deposits; see note 1) 
adapted from the following map data sources:

1.     Unpublished �eld mapping of Baltimore County and 
Baltimore City Coastal Plain sediments by J. 
Reinhardt and E. T. Cleaves, 1970s, scale 1:24,000

2.     Unpublished �eld mapping of Howard County 
Coastal Plain sediments by J. Reinhardt, 1973-1975, 
scale 1:24,000

3.     Glaser, J. D., 1976, Geologic Map of Anne Arundel 
County: Maryland Geological Survey, scale 1:62,500

1. Structural symbols on alluvium represent bedrock exposures in stream valleys. In areas where bedrock 
outcrops are restricted to within stream channels, alluvium is omitted from the map to show the approximate 
extent of the bedrock unit outcrops.

2. Contacts are generally inferred or approximate. Distribution and concentration of structural symbols are a 
general indication of the con�dence of the location and identity of any contact.

Contacts bounding Quaternary alluvium were mapped primarily using 1 m-resolution lIDAR data rendered 
through various imagery processing techniques to reveal the abrupt changes in slope characteristic of these 
contacts. Select portions of contacts bounding terrace and upland deposits were mapped by the same method 
at locations within stream channels and �oodplains where these contacts are clearly represented in lIDAR data. 
Sampling and traditional �eld mapping of Quaternary alluvium and terrace and upland deposits were conduct-
ed to ensure the accuracy of selective mapping with lIDAR data.

With the exceptions of contacts bounding Quaternary alluvium and select terrace and upland deposits as 
described above, contacts separating Cretaceous and younger map units are adapted from map data sources 
given in �gure 1. Limited sampling, analysis of 1 m-resolution lIDAR data, and traditional �eld mapping conduct-
ed at representative locations as part of this study generally agree with the locations of Cretaceous and younger 
map unit contacts adapted from existing maps. However, note that due to the scarcity of exposed sections and 
the gradational nature common for contacts between Coastal Plain units, such contacts are typically highly 
generalized and drawn largely on the bases of topographic variations and sparse sampling of the immediate 
subsurface.

3. Depth to bedrock contours are adapted from �gure 2 of Hansen and Edwards (1986) and �gure 47 of 
Andreasen et al. (2013) and well data therein, with minor changes to contours made based on the elevations of 
bedrock outcrops located as part of this study.

Introduction
The Relay Quadrangle is contained within portions of Anne Arundel, Howard, and Baltimore Counties, as well as a small portion of Baltimore City in the northeast 
corner of the quadrangle. Most of the quadrangle is urban and suburban. A portion of the northwest corner occupied by Patapsco Valley State Park is relatively unde-
veloped. 

The geology of the Relay Quadrangle has been mapped previously at various scales. Knopf and Jonas (1925) and Cloos and Broedel (1940) mapped portions of the 
Relay Quadrangle as part of their 1:62,500 scale geologic maps of Baltimore and Howard Counties, respectively. Cohen (1937) produced a regional structural map that 
includes data gathered from Relay Quadrangle bedrock. Mapping of bedrock units by W.P. Crowley was compiled into multiple county-scale maps (Crowley et al., 
1976; Edwards Jr., 1993) that together include all the exposed bedrock of Relay Quadrangle, although W.P. Crowley never produced a geologic map of the Relay 
Quadrangle at 1:24,000 scale. Most recently, mapping of the Relay Quadrangle and adjacent Savage Quadrangle bedrock units was undertaken by Drake (1998) as 
part of his investigations into regional-scale tectonic problems. Mapping of Coastal Plain units at 1:24,000 scale by J. Reinhardt and E. T. Cleaves was compiled into 
1:62,500 scale geologic maps of Howard County (Edwards Jr., 1993) and Baltimore County and City (Crowley et al., 1976). Within Anne Arundel County, Coastal Plain 
units were mapped at 1:62,500 scale by Glaser (1976).

The majority of the Relay Quadrangle exposes Cretaceous and younger unconsolidated and poorly consolidated sediments deposited atop crystalline bedrock. The 
unconsolidated sediments occur as a thin veneer draped along the Mid-Atlantic Fall Line (approximate boundary between the Coastal Plain and Piedmont physio-
graphic provinces) in the northwest of the quadrangle, and gradually thicken to the southeast, reaching over 700 ft in thickness in the southeast corner of the quad-
rangle (Hansen and Edwards, 1986). Alluvium occurs within most stream valleys. Alluvial terrace gravels occur along the banks and �oodplains of the Patapsco River 
and its major tributaries. Extensive outcrops of metamorphic and plutonic bedrock occur within portions of the northwest corner of the quadrangle. The oldest unit 
present is the Mt. Washington Amphibolite (Crowley, 1976), a group of amphibolite and subordinate ultrama�c rocks metamorphosed to greenschist and amphibo-
lite facies. The Mt. Washington Amphibolite hosts several varieties of felsic gneiss, at least some of which clearly intrudes the ma�c rocks of the unit. The Mt. Washing-
ton Amphibolite and the Hollo�eld Ultrama�te (not on the Relay Quadrangle) belong to the Baltimore Ma�c Complex (BMC), a regionally extensive unit of ma�c and 
ultrama�c rocks thought to represent either a dismembered ophiolite (Crowley, 1976; Morgan, 1977; Muller and Chapin, 1984; Wagner and Srogi, 1987; Horton et al., 
1989; Guice et al., 2021), a layered igneous intrusion (Williams, 1886; Leonard, 1901; Jonas and Knopf, 1921; Herz, 1951; Hopson, 1964; Southwick, 1970; Higgins, 1972; 
Gates et al., 1991; Shank et al., 2015), or an obducted portion of an island-arc or backarc complex (Hanan and Sinha, 1989; Sinha et al., 1997). Within the Relay Quad-
rangle, the Mt. Washington Amphibolite is in contact to the east with interlayered amphibolite and subordinate felsic gneiss of the Druid Hill Amphibolite, which 
grade eastward into felsic gneiss of the Relay Felsite (formerly the Druid Hill Amphibolite Member and Relay Gneiss Member, respectively, of the James Run Forma-
tion (Crowley, 1976), updated to formational status by Drake (1998)). Both the Druid Hill Amphibolite and Relay Felsite are thought to be metamorphosed volcanic, 
volcaniclastic, and hypabyssal arc-products (Higgins, 1972; Crowley, 1976). Felsic gneiss of the Cold Spring Gneiss injection complex (Crowley, 1976; formerly the 
Leakin Park Gneiss and Ilchester Gneiss of Hopson, 1964) intrudes the Mt. Washington Amphibolite and Druid Hill Amphibolite (and possibly the Relay Felsite) 
throughout the quadrangle, at several locations forming map-scale bodies. In one area a lens of quartzite with at least a partial metasedimentary component appears 
to be in contact with felsic gneiss of the Druid Hill Amphibolite. Sparse outcrops of Ellicott City Granodiorite (Hopson, 1964) intrude Mt. Washington Amphibolite at 
the western edge of the quadrangle along the Patapsco River. Swarms of anastomosing tabular bodies of pegmatitic granite, possibly genetically related to Ellicott 
City Granodiorite (Drake, 1998), intrude Mt. Washington Amphibolite extensively and cut all the other crystalline rock units at various locations. 

As part of this study, the bedrock geology of the Relay Quadrangle was mapped at 1:24,000 scale using traditional �eld techniques as well as GPS with approximately 
15 ft accuracy. 19 samples were collected for major element geochemistry analysis to aid in distinguishing between units that appear similar to one another in the 
�eld. In addition, 12 previously analyzed samples from the Relay Quadrangle are included in the following discussion and associated �gures. U-Pb data were obtained 
for zircon populations from a total of three samples analyzed by LA-ICP-MS.

Geochemistry
Rocks analyzed from the Relay Quadrangle are generally of a bimodal chemical distribution with respect to SiO2. Plotted on a total alkali vs. silica diagram (LeBas et al., 
1986), rock compositions range widely from 37 to 80 weight percent silica content. Assuming present compositions re�ect those of the protoliths, the samples have 
silica and total alkali contents consistent with picro-basalt, basalt, trachy-basalt, basaltic-andesite, dacite, and rhyolite, with most samples plotting in the basalt and 
rhyolite �elds. One sample plots left of the picro-basalt �eld (Fig. 3).

The chemistry of the ma�c rocks generally follows a tholeiitic trend of increasing TiO2 with increasing Fe2O3/(Fe2O3+MgO) (Fig. 4) (Miyashiro, 1973); ma�c rock compo-
sitions generally plot within tholeiitic �elds on K2O vs. SiO2 (Fig. 5) (Peccerillo and Taylor, 1976) and MgO vs. Fe2O3 vs. K20+NaO2 plots (Fig. 6) (Irvine and Baragar, 
1971). Analyzed ma�c rocks from the Mt. Washington Amphibolite are not distinguishable in terms of major element composition from ma�c rocks analyzed from the 
Druid Hill Amphibolite.

Two groups of felsic rocks are distinguishable on the basis of major element composition (Fig. 4). Rocks from the �rst group, which contain high silica, low K, and high 
Na, are chemically similar to felsic rocks previously analyzed from the Relay Felsite (Hopson, 1964; Higgins, 1972), the Carroll Gneiss of Baltimore City (Hopson, 1964), 
the Churchville Gneiss of Harford County (Southwick, 1970), and various members of the James Run Formation in northern Maryland (Higgins and Conant, 1990; 
Plank, 2001). Samples from the second group of felsic rocks contain high K and generally low Na relative to the �rst group, and are chemically and texturally similar to 
outcrops of Cold Spring Gneiss in Baltimore City (Crowley, 1976; Daniel Viete, personal communication, 2019).

Geochronology
Previous geochronology
Tilton et al. (1970) proposed a Cambrian age for the James Run Gneiss on the basis of discordant ages of zircon grains separated from (1) a sample collected at the 
Gatch Quarry at Churchville in southern Harford County, Maryland, type locality of the James Run Gneiss (Southwick and Fisher, 1967) (Churchville Gneiss Member of 
the James Run Formation (Horton et al., 2010)), and (2) a felsic gneiss sample from the Campbell Quarry in Baltimore, later assigned to the Carroll Gneiss Member of 
the James Run Formation (Crowley, 1976). Sinha et al. (2012) obtained a SIMS U-Pb age of 479 ± 4 Ma for the same split of zircons from the Gatch Quarry analyzed by 
Tilton et al. (1970). Horton et al. (2010) obtained a number of SHRIMP U-Pb ages for James Run units, including 458 ± 4 Ma for a felsic gneiss outcrop from the Gatch 
Quarry (Churchville Gneiss Member of the James Run Formation), 462 ± 4 Ma for the Carroll Gneiss Member, and 458 ± 4 Ma for a sample of felsic gneiss from an 
outcrop of Relay Felsite located within the Relay Quadrangle approximately 300 ft east of the Druid Hill Amphibolite-Relay Felsite contact as mapped herein.

To determine a best estimate age for the Baltimore Ma�c Complex (BMC), Sinha et al., 1997 analyzed two zircon fractions separated from a plagiogranite and two 
from a quartz gabbro and obtained a TIMS U-Pb upper intercept age of 489 ± 7 Ma. This age is in agreement with a 490 ± 20 Ma Sm-Nd model age reported by Shaw 
and Wasserburg (1984) based on three rock samples. U-Pb geochronology by SIMS on zircons extracted from two Ellicott City Granodiorite samples yielded ages of 
363 ± 10 Ma and 369 ± 4 Ma, respectively (Sinha et al., 2012).

Samples and analytical methods
The locations of each of the three samples analyzed for U-Pb data can be found on the Geologic Map of the Relay Quadrangle. U-Pb geochronology of zircon was 
performed on the Laser Ablation-Inductively Coupled Plasma-Mass Spectrometer (LA-ICP-MS) at the Tectonics, Metamorphic Petrology & Orogeny (TeMPO) Laborato-
ry at Johns Hopkins University. Typical 2σ uncertainty of 238U/206Pb for each measurement is ~3% (±12–15 Myr), which should be considered the accuracy of these age 

data (individual analyses), because excess variance in a 
population cannot be identi�ed at a level �ner than the 
analytical precision (Horstwood et al., 2016). Analyses from 
each sample are plotted on Tera-Wasserburg Concordia 
diagrams and constitute kernel density estimate and histo-
gram plots in Figure 2. Analyses that do not overlap within 2
σ covaried uncertainty of Concordia are considered discon-
cordant. For each of the three analyzed samples, the MSWD 
(Mean Square Weighted Deviation) of 238U/206Pb ages sug-
gests the ages do not form a single statistical population 
(Spencer et al., 2016).

Results
19-WJ-MD-1388

This sample was collected from an outcrop of quartzite 
interlayered with subordinate (up to 15%), thin layers of 
garnet-chlorite-muscovite schist. The outcrop is heavily 
fractured, sheared, and veined. The rock is interpreted as 
metasedimentary based on its mineralogy. The sampled unit 
appears to be in contact with felsic gneiss of the Druid Hill 
Amphibolite located along Soapstone Branch, although the 
contact is not exposed.

The sample yielded a statistical peak around 480 Ma; in 
addition, the sample yielded younger concordant ages 
ranging as young as 419 ± 13 Ma (Fig. 2A). As this sample is 
interpreted as metasedimentary, these younger ages could 
represent detrital zircons derived from younger source 
rocks, thus placing the depositional age of the sampled rock 

signi�cantly younger than the 
various maximum depositional 
ages and crystallization ages for 
Relay Quadrangle units and 
correlative rocks suggested by 
this and previous studies (e.g. 
Horton et al., 2010; Sinha et al., 
2012). Alternatively, the younger 
population of ages may repre-
sent a metamorphic event or be 
due to Pb loss along cracks or 
during hydrothermal alteration. 
The presence of a negatively 
skewed age probability curve is 
consistent with Pb loss (Spencer 
et al., 2016), and the outcrop 
from which this sample was 
collected is highly fractured and 
heavily intruded by quartz veins. 

19-WJ-MD-17

This sample is a felsic gneiss 
collected on the south bank of 
the Patapsco River ca. 140 m up 
section from the approximate 
trace of the gradational contact 
separating the Druid Hill Amphi-
bolite and Relay Felsite. The 
sample is a well foliated, pale 
gray, medium-grained, leuco-

cratic quartz-plagioclase-gneiss containing 
minor muscovite and chlorite. 

Results for this sample include one anomalously 
young analysis and three discordant analyses. 
The remaining analyses, which do not constitute 
a single age population (MSWD 7.1 for weighted 
mean of 238U/206Pb ages not excluded as discor-
dant or anomalous), form a statistical peak at 496 
Ma (Fig. 2B).

19-WJ-MD-18

This sample was collected from an approximately 
10 foot-thick body of felsic gneiss located on the 
north bank of Bull Run near its con�uence with 
Soapstone Branch. The sampled body is �ne- to 
coarse-grained pinkish-orange gneiss consisting 
predominantly of orthoclase and plagioclase 
feldspar and quartz, with subordinate muscovite, 
biotite, and accessory garnet. The approximate 
trace of the Druid Hill Amphibolite-Mt. Washing-
ton Amphibolite contact is mapped along the 
western edge of the sampled gneiss body, 
although the nature and exact location of this 
contact remain unclear. 

Results for this sample include one anomalously 
young age with large uncertainty, and 17 discor-
dant analyses. The remaining analyses, which do 
not constitute a single age population (MSWD 
10.3 for weighted mean of 238U/206Pb ages not 
excluded as discordant or anomalous), form a 
statistical peak at 482 Ma (Fig. 2C).

Discussion
Relationship between Cold Spring Gneiss and 
other bedrock units
Rocks formerly grouped as the James Run Forma-
tion (including Relay Felsite, Carroll Gneiss, Druid 
Hill Amphibolite, James Run Gneiss of Harford 
County, MD, and the James Run Formation of 
Cecil County, MD) have been noted for their 
common chemistry: relatively high Na, high silica, 
and low K (Hopson, 1964; Southwick, 1969; 
Higgins, 1972, 1990; Hanan and Sinha, 1989). A 
group of felsic rocks within the Relay Quadrangle 
is distinguishable from felsic rocks of the Relay 
Felsite and Druid Hill Amphibolite on the bases 
of abundant K-feldspar, relatively high K, and 
relatively low Na (Fig. 4). This distinct group of 
felsic rocks resembles felsic gneiss outcrops in 
the Baltimore area �rst referred to as the “gran-
odiorite gneiss of Leakin Park” and “granitic 
gneiss east of Ilchester” by Hopson (1964), and 
subsequently expanded into the Cold Spring 
Gneiss by Crowley (1976). The nomenclature of Crowley (1976) is adopted here. The K-feldspar-bearing gneiss crops out in abundance along the Druid Hill Amphibo-
lite-Mt. Washington Amphibolite contact within the Relay Quadrangle, consistent with the common occurrence of K-feldspar-bearing gneiss mapped as Cold Spring 
Gneiss along the same contact in western Baltimore (Crowley, 1979). Drake (1998) did not include Cold Spring Gneiss on his geologic map of the Relay and Savage 
quadrangles but mapped two bodies of felsic gneiss as “plagiogranite (Omp)”; both bodies have been reassigned to the Cold Spring Gneiss on the basis of abundant 
K-feldspar and relatively high K content analyzed in samples from each body (Fig 4). Field and geochronology data collected as part of this study indicate the Cold 
Spring Gneiss is distinct from the younger Ellicott City Granodiorite and the various swarms and masses of pegmatitic granite that cut all other bedrock units in the 
area. 

The relationship between the rocks mapped as Cold Spring Gneiss and the other felsic rocks occurring within the Druid Hill Amphibolite and Relay Felsite remains 
unclear. One possibility is that the Cold Spring Gneiss represents an intrusive source for Relay Felsite and felsic rocks occurring within the Druid Hill Amphibolite. This 
cogenetic interpretation is consistent with the broad similarity between the respective distributions of U-Pb zircon ages yielded from the Cold Spring Gneiss, Relay 
Felsite, and a quartzite body within the Druid Hill Amphibolite (Fig. 2), although signi�cant uncertainty (12-15 Myr) is associated with each age. A cogenetic relation-
ship requires subsequent alteration on the part of the Cold Spring Gneiss or the Druid Hill Amphibolite and Relay Felsite to account for analyzed chemical di�erences. 
Hopson (1964), Southwick (1969), and Higgins and Conant (1990) provided evidence for various mechanisms by which exposure to seawater followed by diagenesis 
and metamorphism could result in the depletion of K and enrichment of Na observed in the Relay Felsite, Druid Hill Amphibolite, and correlative units in Baltimore 
City and Baltimore, Harford, and Cecil Counties. A cogenetic relationship between the Relay Felsite and Cold Spring Gneiss also requires an explanation for the di�er-
ence in silica content observed between the two rock groups.

Alternatively, the Relay Felsite and felsic components of the Druid Hill Formation may have been derived from intrusive sources distinct from the Cold Spring Gneiss. 
These intrusive sources may have been distal, or removed by faulting along the Mt. Washington Amphibolite-Druid Hill Amphibolite contact, or they may be buried 
beneath Coastal Plain sediments to the east, implying the Druid Hill Amphibolite is stratigraphically above the Relay Felsite. Alternatively, the various low-K felsic 
rocks intruding the Mt. Washington Amphibolite and Druid Hill Amphibolite may represent an intrusive source for the Relay Felsite and felsic components of the 
Druid Hill Formation.

Additional geochemistry and geochronology work is required to fully characterize the various felsic rock units that occur within the Relay Quadrangle and nearby 
areas, particularly the poorly understood Cold Spring Gneiss. Field observations and geochemical data (Figs. 3-6) suggest Cold Spring Gneiss underlies a larger area of 
the Relay Quadrangle than previously mapped, and it is possible that areas in the Relay Quadrangle and elsewhere mapped as Relay Felsite or correlative felsic units 
such as Carroll Gneiss may yet contain a signi�cant proportion of rocks more similar to Cold Spring Gneiss.

Age and origin of the Relay Felsite and Druid Hill Amphibolite
The Druid Hill Amphibolite and Relay Felsite appear to comprise a stratigraphic sequence consisting of supracrustal deposits that have been metamorphosed and cut 
by numerous shallow felsic intrusions. Previous evidence for supracrustal deposition comes from the Relay Quadrangle and from correlative units to the northeast in 
Baltimore City and Harford and Cecil Counties, and includes geochemical a�nities to rocks of known volcanic/volcaniclastic origin (Hopson, 1964; Southwick, 1969; 
Higgins, 1972); relict pillow basalts (Higgins, 1990) and amygdules (Southwick, 1970; Crowley, 1976); stretched polygranular quartz blebs suggestive of recrystallized 
pumice fragments (Hanan and Sinha, 1989); and the presence of interlayered ma�c and felsic layers with sharp contacts, uniform thickness, and lateral continuity, 
consistent with volcaniclastic sedimentation (Knopf and Jonas, 1929; Hopson, 1964; Crowley, 1976; Horton et al., 2010). The discovery within the Druid Hill Amphibo-
lite of a lenticular body of quartz-rich rock including quartzite interlayered with garnet-chlorite-muscovite schist supports a supracrustal origin for the Druid Hill 
Amphibolite and the Relay Felsite into which it grades, although it should be noted that the contacts bounding the lenticular body or quartz-rich rock are not 
exposed and may be faults.

Geochronology results support a complex history for the Relay Felsite. U-Pb ages of zircons collected from a sample of Relay Felsite do not de�ne a single age popula-
tion and may include inherited and/or detrital components (Fig. 2B). Signi�cantly, the majority of U-Pb zircon ages yielded by the Relay Felsite sample do not agree 
with the 458 ± 4 Ma SHRIMP U-Pb age determined by Horton et al. (2010) for a sample of the same unit collected roughly along strike less than 400 yards to the north-
west. A possible explanation for the apparent di�erence in the age data is that the Relay Felsite is a polygenetic group of compositionally similar rocks including older 
(ca. 495 ± 12-15 Ma) supracrustal and hypabyssal rocks cut by younger (458 ± 4 Ma) intrusions. Zircon grains that yielded the 458 ± 4 Ma SHRIMP U-Pb age were 
interpreted to have derived from a shallow intrusion based on oscillatory zoning and external grain characteristics (Horton et al., 2010). An alternative explanation for 
the disagreement in ages analyzed as part of this study and by Horton et al. (2010) is that the samples are both ca 460 Ma and that the older zircon ages (ca. 495 ± 
12-15 Ma) from the sample dated as part of this study represent detrital or inherited ages. However, given the documented robust arc activity ca. 460 Ma (Aleiniko� et 
al., 2002; Horton et al., 2010; Sinha et al., 2012) and the interpretation of the Druid Hill Amphibolite and Relay Felsite as hypabyssal, volcanic and volcaniclastic, it 
seems unlikely that the sample analyzed in this study could have been deposited or emplaced at ca. 460 Ma without accruing abundant zircon grains of this age.

Relationship of Relay Felsite and Druid Hill Amphibolite to Baltimore Mafic Complex (BMC)
The relationship between the Mt. Washington Amphibolite (and larger Baltimore Ma�c Complex (BMC)) and the stratigraphic sequence represented by the Druid Hill 
Amphibolite and Relay Felsite remains an outstanding question. Geochronology results support a broad age correlation between the BMC and the Druid Hill Amphib-
olite and Relay Felsite. Except for a handful of younger ages, the majority of zircon ages from the Relay Felsite (Fig. 2B) agree within uncertainty with ages reported for 
the BMC (Sinha et al., 1997; Shaw and Wasserburg 1984). Crowley (1976, p. 29) interpreted the base of the Druid Hill Amphibolite in the Baltimore area as either a 
low-angle thrust fault or an unconformity, arguing it truncates an anticline within the BMC the existence of which he determined from the distribution of sparse 
ultrama�c and ma�c outcrops. Within the Relay and Savage quadrangles, Drake (1998) mapped the Mt. Washington Amphibolite-Druid Hill Amphibolite contact as 
the Soapstone Branch thrust fault, citing evidence for a thrust fault presented by Crowley (1976) while leaving the possibility of an unconformity unaddressed. Drake 
(1998) mapped the location of the proposed fault based on the presence of mylonitic foliation and the relative sparsity of pegmatitic granite within the Druid Hill 
Amphibolite as compared to the Mt. Washington Amphibolite to the west. 

During this study, limited evidence was observed for a fault separating the Mt. Washington Amphibolite and Druid Hill Amphibolite. Mylonitic foliation was observed 
throughout the Mt. Washington Amphibolite, Druid Hill Amphibolite, Relay Felsite, and Cold Spring Gneiss, but not in any notable concentration along the Mt. Wash-
ington Amphibolite-Druid Hill Amphibolite contact as mapped here or as mapped by Drake (1998). At one location along the east bank of Bull Branch just north of its 
con�uence with Soapstone Branch, the foliation within the Mt. Washington Amphibolite appears to be truncated by the western contact of a large body of Cold 
Spring Gneiss and the foliation of the gneiss, although the contact is not exposed and the observed orientations could be explained by folds. In general the patchy 
distribution of outcrops and the homogeneity of the ma�c rocks of the Relay Quadrangle—in terms of geochemistry and outcrop appearance—makes the identi�ca-
tion of structures in the �eld di�cult. More detailed petrology and geochemistry work is required to fully characterize the relationship between the Mt. Washington 
Amphibolite and Druid Hill Amphibolite, as well as the nature and exact location of any contact separating them.
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Figure 2. Tera-Wasserburg Concordia diagrams (left) and kernel density estimate and histogram plots (right) of U-Pb zircon 
LA-ICP-MS data for metamorphic rocks of the Relay Quadrangle. Data-point ellipses are 2σ. Ages adjacent to Concordia and proba-
bility peaks are in Ma. Red ellipses are interpreted as discordant or anomalous. MSWD=mean squared weighted deviation for 
weighted mean of 238U/206Pb ages not excluded as discordant or anomalous.

0.0

0.1

0.2

0.3

0.4

0.5

0.6

7 9 13 17 19

20
7
Pb

/20
6
Pb

238 U/206 Pb
21

0.04

0.05

0.06

0.07

0.08

0.09

0.10

8 10 12 14 16 18 20

n=31/17

8 10 12 14 16 18 20

20
7
Pb

/20
6
Pb

0.04

0.05

0.06

0.07

0.08

0.09

0.10

238 U/206 Pb

n=68/4

0.04

0.05

0.06

0.07

0.08

0.09

0.10

8 10 12 14 16 18 20

20
7
Pb

/20
6
Pb

238 U/206 Pb

n=20/3

19-WJ-MD-1388
Quartzite interlayered
with garnet-chlorite-muscovite 
schist
(lenticular body mapped within 
Druid Hill Amphibolite)

19-WJ-MD-18
Felsic gneiss
(Cold Spring
Gneiss)

A

B

C

19-WJ-MD-17
Felsic gneiss
(Relay Felsite)

MSWD=7.1

MSWD=10.3

MSWD=9.4

R
elative Probability

238 U/206 Pb age (Ma)

238 U/206 Pb age (Ma)

238 U/206 Pb age (Ma)

nu
m

be
r

400500600

400500600

400500600

1

2

3

4

5

6

7

8

2

4

6

8

10

12

14

16

1

2

3

4

5

6

7

8

18

all analyses

anomalous
and discordant
analyses
excluded

482

480

496 all analyses

anomalous
and discordant
analyses
excluded

all analyses

anomalous
and discordant
analyses
excluded

Figure 3. Total alkalis vs. silica plot of samples from the Relay Quadrangle.
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Figure 5. K2O vs. SiO2 plot


