inter/fingering relationships. At other locations felsic rocks resembling Relay Felsite cut amphibolite layering. In a well
ness within the Relay Quadrangle; the total thickness of the unit is unknown as its eastern contact is buried by Coastal Plain
Fine- to medium-grained, layered and massive quartz-plagioclase gneiss with minor, varying abundances of biotite and
rying at Johns Hopkins University. Typical 2σ uncertainty of
The locations of each of the three samples analyzed for U-Pb data can be found on the Geologic Map of the Relay Quadrangle. U-Pb geochronology of zircon was

previous geochronology

The Druid Hill Amphibolite and Relay Felsite appear to comprise a stratigraphic sequence consisting of supracrustal deposits that have been metamorphosed and cut

areas, particularly the poorly understood Cold Spring Gneiss. Field observations and geochemical data (Figs. 3-6) suggest Cold Spring Gneiss underlies a larger area of

Other bedrock units

statistical peak at 482 Ma (Fig. 2C).

The remaining analyses, which do not constitute

The remaining analyses, which do not constitute

series boundaries after Irvine and Baragar (1971)

Rocks formerly grouped as the James Run Forma-

Cecil County, MD) have been noted for their

The common chemistry: relatively high Na, high silica,

The common chemistry: relatively high Na, high silica,