INTRODUCTION

The use of deicing salts has been shown to have significant impacts on surface and groundwater, resulting in degradation of aquatic life and threatening drinking water sources (Stranko and others, 2013). Baltimore County has had an increasing number of complaints regarding high-chloride contamination. Chloride is difficult to remove from water, often requiring reverse osmosis. This process is expensive, requires large amounts of water, and generates highly concentrated waste which must then be disposed of. High-chloride water can damage plumbing fixtures, appliances, and pipes. Since chloride is reactive, it does not degrade in the environment. Additionally, the impacts of these salts on the mobilization of trace elements, heavy metals, and adsorbed contaminants in Maryland groundwater have not been adequately evaluated.

From the 1970’s to the early 2000’s, the Maryland Geological Survey (MGS) sampled many wells in the Maryland Piedmont, testing the water for chloride and other major ions and constituents. These data provide a valuable baseline against which future water-quality samples can be compared to monitor changes in groundwater chemistry.

HISTORY OF ROAD SALT USE

“While the cost of damage to bridge decks and vehicles is high, but reversible, the damage to health many not be reversed. We can no longer afford to ignore the fact that we are depositing large quantities of salt into the water that nature provides us and upon which we are dependent every moment of our lives. The most advanced medical research indicates that water with more than 20 mg/L sodium is unhealthy and detrimental to a substantial fraction of the population. The American Heart Association supports this fact. Disregard for the quality of drinking water in this and any instance is extreme negligence and we must face the issue squarely. Road salt may be only one of the many serious pollutants in our environment, but that is no excuse to allow the present situation to exist any longer. In order to avoid further damage and high costs, salt use to winter maintenance must be reduced in many areas.” - EPA, 1976

SOURCES OF CHLORIDES

Road salt applied during winter precipitation events make up 43.5% of all salts consumed by the US*

Agricultural amendments such as fertilizers, pesticides, and animal feed additives make up 25.5% of all salts consumed by the US*

Water treatment systems, such as water softeners and reverse osmosis make up 14.4% of all salts consumed by the US*

*Other salt use is from chemical processes, distributors, food processing (USGS, 2017)

ADVERSE EFFECTS

Not Regulated: Chloride does not have an EPA Maximum Contaminant Level, but has a Secondary Maximum Contaminant Level of 250 mg/L.

High Sodium: Elevated chloride is often associated with elevated sodium, which can exceed dietary restrictions for some individuals with hypertension.

Elevated Chloride may also cause:

Water to develop salty taste
Costly water treatment systems
Well integrity to be compromised
Corrosion to pipes and household appliances

CURRENT TRENDS IN THE PIEDMONT

CHLORIDE CONCENTRATIONS ARE INCREASING

Acknowledgements

Thank you to the Maryland Department of the Environment for funding this project.

Thank you to the USGS for analyzing the samples.

Thank you to Baltimore, Cecil, Carroll, Frederick, Harford, Howard, and Montgomery Counties for supplying chloride data.

REFERENCES

Maryland State Highway Administration, 2015, The Maryland Department of Transportation’s State Highway Administration (SHA, 2015; SHA, 2017)


U.S. Environmental Protection Agency, 1976, An economic analysis of the environmental impact of highway de-icing, Environmental Protection Technology Series, EPA-600-2-76-105

Ensor, Bill., 2016, Observed Impacts of Chlorides in Baltimore County, Maryland Water Monitoring Council Road Salt Workshop.

SOURCES OF CHLORIDES

Road salt applied during winter precipitation events make up 43.5% of all salts consumed by the US*

Agricultural amendments such as fertilizers, pesticides, and animal feed additives make up 25.5% of all salts consumed by the US*

Water treatment systems, such as water softeners and reverse osmosis make up 14.4% of all salts consumed by the US*

*Other salt use is from chemical processes, distributors, food processing (USGS, 2017)

ADVERSE EFFECTS

Not Regulated: Chloride does not have an EPA Maximum Contaminant Level, but has a Secondary Maximum Contaminant Level of 250 mg/L.

High Sodium: Elevated chloride is often associated with elevated sodium, which can exceed dietary restrictions for some individuals with hypertension.

Elevated Chloride may also cause:

Water to develop salty taste
Costly water treatment systems
Well integrity to be compromised
Corrosion to pipes and household appliances

CURRENT TRENDS IN THE PIEDMONT

CHLORIDE CONCENTRATIONS ARE INCREASING

Acknowledgements

Thank you to the Maryland Department of the Environment for funding this project.

Thank you to the USGS for analyzing the samples.

Thank you to Baltimore, Cecil, Carroll, Frederick, Harford, Howard, and Montgomery Counties for supplying chloride data.

REFERENCES

Maryland State Highway Administration, 2015, The Maryland Department of Transportation’s State Highway Administration (SHA, 2015; SHA, 2017)


U.S. Environmental Protection Agency, 1976, An economic analysis of the environmental impact of highway de-icing, Environmental Protection Technology Series, EPA-600-2-76-105

Ensor, Bill., 2016, Observed Impacts of Chlorides in Baltimore County, Maryland Water Monitoring Council Road Salt Workshop.